Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity

Cover Page

Cite item

Abstract

In this paper, we consider transverse steady oscillations of a piezoactive bimorph in the formulation of a plane deformation. The problem is solved within the framework of linear thermoelectroelasticity, while the temperature problem is solved separately and the temperature distribution is taken into account in the constitutive relations of electroelasticity. On the basis the Kirchhoff-Love type hypothesis for mechanical quantities and a symmetric quadratic distribution of the electric potential, an approximate theory for calculating bimorph vibrations is constructed. Numerical experiments have been carried out for various cases of pinning and excitation of vibrations. The results of these experiments were compared with calculations made using the finite element method in the COMSOL package and showed the adequacy of the constructed theory in the low-frequency region.

About the authors

A. N. Soloviev

Don State Technical University; Southern Federal University

Email: solovievarc@gmail.com
Rostov-on-Don, Russia

V. A. Chebanenko

Southern Federal University; Southern Research Center of the Russian Academy of Sciences

Email: valera@chebanenko.ru
Rostov-on-Don, Russia

M. S. Germanchuk

V. I. Vernadsky Crimean Federal University

Author for correspondence.
Email: germanchukms@cfuv.ru
Simferopol, Russia

References

  1. Bednarek S. Elastic and magnetic properties of heat-shrinkable ferromagnetic composites with elastomer matrix// Mater. Sci. Engrg. B.- 2000.- 77.- С. 120-127.
  2. Binh D.T., Chebanenko V.A., Duong L.V., Kirillova E., Thang P.M., Soloviev A.N. Applied theory of bending vibration of the piezoelectric and piezomagnetic bimorph// J. Adv. Dielectrics. -2020.- 10, № 3. -2050007.
  3. Du J.K., Wang J., Zhou Ya. Thickness vibrations of a piezoelectric plate under biasing fields// Ultrasonics.- 2006.- 44.-С. 853-857.
  4. Huang J. Micromechanics determinations of thermoelectroelastic fields and effective thermoelectroelastic moduli of piezoelectric composites// Mater. Sci. Engrg. B.- 1996.- 39.-С. 163-172.
  5. Kulikov G.M., Mamontov A., Plotnikova S. Coupled thermoelectroelastic stress analysis of piezoelectric shells// Composite Structures. -2015.- 124.- С. 65-76.
  6. Levin V. Exact relations between the effective thermoelectroelastic characteristics of piezoelectric composites// Int. J. Engrg. Sci. - 2013.- 66-67.- С. 14-20.
  7. Levin V.M., Rakovskaja M.I., Kreher W.S. The effective thermoelectroelastic properties of microinhomogeneous materials// Int. J. Solids Structures.- 1999.- 36.-С. 2683-2705.
  8. Nowacki W. Mathematical models of phenomenological piezoelectricity// Banach Center Publ. - 1985.- 1, № 15.- С. 593-607.
  9. Pasternak I., Pasternak R., Sulym H. A comprehensive study on Green’s functions and boundary integral equations for 3D anisotropic thermomagnetoelectroelasticity// Eng. Anal. Bound. Elem. - 2016.- 64.- С. 222-229.
  10. Soloviev A.N., Chebanenko V.A., Oganesyan P.A., Chao S.-F., Liu Y.-M. Applied theory for electroelastic plates with non-homogeneous polarization// Mater. Phys. Mech.- 2019.- 42, № 2.- С. 242-255.
  11. Xu K., Noor A.K., Tang Y.Y. Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates// Comput. Methods Appl. Mech. Engrg.- 1995.- 126, № 3-4.-С. 355-371.
  12. Xu K., Noor A.K., Tang Y.Y. Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates// В сб.: «Contemporary Research in Engineering Science».- Berlin-Heidelberg: Springer, 1995.-С. 593-612.
  13. Zhang C., Cheung Y.K., Di S., Zhang N. The exact solution of coupled thermoelectroelastic behavior of piezoelectric laminates// Comput. Struct. -2002.-80.-С. 1201-1212.
  14. Zhong X., Wu Y., Zhang K. An extended dielectric crack model for fracture analysis of a thermopiezoelectric strip// Acta Mech. Solida Sin. - 2020.- 33.- С. 521-545.

Copyright (c) 2023 Soloviev A.N., Chebanenko V.A., Germanchuk M.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies