Integro-differential equations in Banach spaces and analytic resolving families of operators
- Authors: Fedorov V.E.1, Godova A.D.1
-
Affiliations:
- Chelyabinsk State University
- Issue: Vol 69, No 1 (2023): Differential and Functional Differential Equations
- Pages: 166-184
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/34600
- DOI: https://doi.org/10.22363/2413-3639-2023-69-1-166-184
- EDN: https://elibrary.ru/FPXSDA
Cite item
Full Text
Abstract
We study a class of equations in Banach spaces with a Riemann–Liouville-type integro-differential operator with an operator-valued convolution kernel. The properties of \(k\)-resolving operators of such equations are studied and the class \(\mathcal
A_{m,K,\chi}\) of linear closed operators is defined such that the belonging to this class is necessary and, in the case of commutation of the operator with the convolution kernel, is sufficient for the existence of analytic in the sector \(k\)-resolving families of operators of the equation under study. Under certain additional conditions on the convolution kernel, we prove theorems on the unique solvability of the nonhomogeneous linear equation of the class under consideration if the nonhomogeneity is continuous in the norm of the graph of the operator from the equation or Hölder continuous. We obtain the theorem on sufficient conditions on an additive perturbation of an operator of the class \(\mathcal A_{m,K,\chi}\) in order that the perturbed operator also belong to such a class. Abstract results are used in the study of initial-boundary value problems for a system of partial differential equations with several fractional Riemann–Liouville derivatives of different orders with respect to time and for an equation with a fractional Prabhakar derivative with respect to time.
About the authors
V. E. Fedorov
Chelyabinsk State University
Author for correspondence.
Email: kar@csu.ru
Chelyabinsk, Russia
A. D. Godova
Chelyabinsk State University
Email: sashka_1997_godova55@mail.ru
Chelyabinsk, Russia
References
- Авилович А. С., Гордиевских Д. М., Федоров В. Е. Вопросы однозначной разрешиомсти и приближенной управляемости для линейных уравнений дробного порядка с гельдеровой правой частью// Челяб. физ.-мат. ж. -2020. - 5, № 1. -С. 5-21.
- Иосида К. Функциональный анализ. -М.: Мир, 1967.
- Като Т. Теория возмущений линейных операторов. -М.: Мир, 1972.
- Клемент Ф., Хейманс Х., Ангенент С., ван Дуйн К., де Пахтер Б. Однопараметрические полугруппы. -М.: Мир, 1992.
- Соломяк М. З. Применение теории полугрупп к исследованию дифференциальных уравнений в пространствах Банаха// Докл. АН СССР. -1958. - 122, № 6. -С. 766-769.
- Трибель Х. Теория интерполяции. Функциональные пространства. Дифференциальные операторы. - М.: Мир, 1980.
- Федоров В. Е., Авилович А. С. Задача типа Коши для вырожденного уравнения с производной Римана-Лиувилля в секториальном случае// Сиб. мат. ж. -2019. - 60, № 2. -С. 461-477.
- Федоров В. Е., Филин Н. В. Линейные уравнения с дискретно распределенной дробной производной в банаховых пространствах// Тр. Ин-та мат. и мех. УрО РАН. -2021. - 27, № 2. -С. 264-280.
- Хенри Д. Геометрическая теория полулинейных параболических уравнений. -М.: Мир, 1985.
- Arendt W., Batty C. J. K., Hieber M., Neubrander F. Vector-valued laplace transforms and Cauchy problems. -Basel: Springer, 2011.
- Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model// Thermal Sci. -2016. - 20. -С. 763-769.
- Bajlekova E. G. Fractional evolution equations in Banach spaces// Канд. дисс. -Eindhoven: Eindhoven Univ. of Technology, 2001.
- Boyko K. V., Fedorov V. E. The Cauchy problem for a class of multi-term equations with Gerasimov- Caputo derivatives// Lobachevskii J. Math. -2022. - 43, № 6. -С. 1293-1302.
- Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel// Prog. Fract. Differ. Appl. -2015. - 1, № 2. -С. 1-13.
- Fedorov V. E. Generators of analytic resolving families for distributed order equations and perturbations// Mathematics. -2020. - 8, № 8. -С. 1306.
- Fedorov V. E., Du W.-S., Kostic M., Abdrakhmanova A. A. Analytic resolving families for equations with distributed Riemann-Liouville derivatives// Mathematics. -2022. - 10, № 5. -С. 681.
- Fedorov V. E., Godova A. D., Kien B. T. Integro-differential equations with bounded operators in Banach spaces// Bull. Karaganda Univ. Math. Ser. -2022. -№ 2. -С. 93-107.
- Fedorov V. E., Filin N. V. On strongly continuous resolving families of operators for fractional distributed order equations// Fractal and Fractional. -2021. - 5, № 1. -С. 20.
- Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M. Analytic resolving families for equations with the Dzhrbashyan-Nersesyan fractional derivative// Fractal and Fractional. - 2022. - 6, № 10. -С. 541.
- Fedorov V. E., Turov M. M. Sectorial tuples of operators and quasilinear fractional equations with multiterm linear part// Lobachevskii J. Math. -2022. - 43, № 6. -С. 1502-1512.
- Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and applications of fractional differential equations. - Amsterdam-Boston-Heidelberg: Elsevier, 2006.
- Pazy A. Semigroups and linear operators and applications to partial differential equations. -New York: Springer, 1983.
- Prabhakar T. R. A singular integral equation with a generalized Mittag-Leffler function in the kernel// Yokohama Math. J. -1971. - 19. -С. 7-15.
- Pru¨ss J. Evolutionary integral equations and applications. -Basel: Springer, 1993.
- Samko S. G., Kilbas A. A., Marichev O. I. Fractional integrals and derivatives. Theory and applications. - Philadelphia: Gordon and Breach, 1993.
- Sitnik S. M., Fedorov V. E., Filin N. V., Polunin V. A. On the solvability of equations with a distributed fractional derivative given by the Stieltjes integral// Mathematics. -2022. - 10, № 16. -С. 2979.
- Tarasov V. E. Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. -New York: Springer, 2011.
- Uchaikin V. V. Fractional derivatives for physicists and engineers. Vol. I, II. -Berlin, Heidelberg: Springer, 2013.