Homogenization of a parabolic equation in a perforated domain with a unilateral dynamic boundary condition: critical case
- Authors: Podolskiy A.V.1, Shaposhnikova T.A.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 68, No 4 (2022)
- Pages: 671-685
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/33497
- DOI: https://doi.org/10.22363/2413-3639-2022-68-4-671-685
Cite item
Full Text
Abstract
In this paper, we study the homogenization of a parabolic equation given in a domain perforated by ''tiny'' balls. On the boundary of these perforations, a unilateral dynamic boundary constraints are specified. We address the so-called ''critical'' case that is characterized by a relation between the coefficient in the boundary condition, the period of the structure and the size of the holes. In this case, the homogenized equation contains a nonlocal ''strange'' term. This term is obtained as a solution of the variational problem involving ordinary differential operator.
About the authors
A. V. Podolskiy
Lomonosov Moscow State University
Author for correspondence.
Email: AVPodolskiy@yandex.ru
Moscow, Russia
T. A. Shaposhnikova
Lomonosov Moscow State University
Email: shaposh.tan@mail.ru
Moscow, Russia
References
- Бекмаганбетов К. А., Чепыжов В. В., Чечкин Г. А. Сильная сходимость аттракторов системы реации-диффузии с быстро осциллирующими членами в ортотропной пористой среде// Изв. РАН. Сер. Мат. - 2022. - 86, № 6. - C. 47-78.
- Диаз Ж. И., Гомез-Кастро Д., Подольский А. В., Шапошникова Т. А. Усреднение вариационных неравенств типа Синьорини для p-Лапласиана в перфорированной области для случая p ∈ (1, 2)// Докл. РАН - 2017. - 473, № 4. - C. 395-400.
- Зубова М. Н., Шапошникова Т. А. Об усреднении краевых задач в перфорированных областях с третьим граничным условием и об изменении характера нелинейности задачи в результате усреднения// Дифф. уравн. - 2011. - 47, № 1. - C. 79-91.
- Зубова М. Н., Шапошникова Т. А. Усреднение уравнения диффузии в области, перфорированной вдоль (n - 1)-мерного многообразия с динамическими краевыми условиями на границе перфораций: критический случай// Докл. РАН - 2019. - 99, № 3. - C. 245-251.
- Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. - М.: УРСС, 2010.
- Angulano M. Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media// ArXiv. - 2017. - 1712.01183.
- Arrieta J. M., Quittner P., Rodriguez-Bernal A. Parabolic problems with nonlinear dynamical boundary conditions and singular initial data// Di er. Integral Equ. - 2011. - 14, № 12. - C. 1487-1510.
- Bandle C., von Below J., Reichel W. Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up// Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. - 2006. - 17, № 1. - C. 35-67.
- Bejenaru I., Diaz J. I., Vrabie I. I. An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamical boundary conditions// Electron. J. Di er. Equ. - 2001. - 50. - C. 1-19.
- Bekmaganbetov K. A., Chechkin G. A., Chepyzov V. V. Attractors and a «strange term» in homogenized equation// C. R. Mecanique - 2020. - 348, № 5. - C. 351-359.
- Bekmaganbetov K. A., Chechkin G. A., Chepyzov V. V. «Strange term» in homogenization of attractors of reaction-di usion equation in perforated domain// Chaos Solitons Fractals. - 2020. - 140. - 110208.
- Bekmaganbetov K. A., Chechkin G. A., Toleubay A. M. Attractors of 2D Navier-Stokes system of equations in a locally periodic porous medium// Bull. Karaganda Univ. Math. - 2022. - № 3. - C. 35-50.
- Conca C., Murat F., Timofte C. A generalized strange term Signorini’s type problems// ESAIM: Math. Model. Numer. Anal. - 2003. - 3, № 57. - C. 773-805.
- Diaz J. I., Gomez-Castro D., Podolskiy A. V., Shaposhnikova T. A. Homogenization of a net of periodic critically scaled boundary obstacles related to reverse osmosis «nano-composite» membranes// Adv. Nonlinear Anal. - 2018. - 9. - C. 193-227.
- Diaz J. I., Gomez-Castro D., Shaposhnikova T. A., Zubova M. N. A nonlocal memory strange term arising in the critical scale homogenisation of a di usion equation with a dynamic boundary condition// Electron. J. Di er. Equ. - 2019. - 2019. - 77.
- Diaz J. I., Shaposhnikova T. A., Zubova M. N. A strange non-local monotone operator arising in the homogenization of a di usion equation with dynamic nonlinear boundary conditions on particles of critical size and arbitrary shape// Electron. J. Di er. Equ. - 2022. - 2022. - 52.
- Escher J. Quasilinear parabolic systems with dynamical boundary conditions// Commun. Part. Di er. Equ. - 1993. - 18. - C. 1309-1364.
- Gomez D., Lobo M., Shaposhnikova T. A., Zubova M. N. On critical parameters in homogenization for nonlinear uxes in perforated domains by thin tubes and related spectral problems// Math. Methods Appl. Sci. - 2015. - 38, № 12. - C. 2606-2629.
- Gomez D., Perez M. E., Podolskii A. V., Shaposhnikova T. A. Homogenization of variational inequalities for the p-Laplace operator in perforated media along manifolds// Appl. Math. Optim. - 2017. - 475.- C. 1-19.
- Timofte C. Parabolic problems with dynamical boundary conditions in perforated media// Math. Model. Anal. - 2003. - 8. - C. 337-350.
- Wang W., Duan J. Homogenized dynamics of stochastic partial di erential equations with dynamical boundary conditions// Commun. Math. Phys. - 2007. - 275, № 1. - C. 163-186.