Explicit solution of a Dirichlet problem in nonconvex angle

Cover Page

Cite item

Abstract

In the present work, we give an explicit solution of the Dirichlet boundary-value problem for the Helmholtz equation in a nonconvex angle with periodic boundary data. We present uniqueness and existence theorems in an appropriate functional class and we give an explicit formula for the solution in the form of the Sommerfeld integral. The method of complex characteristics [14] is used.

About the authors

A. Merzon

Instituto de Fiısica y Matemáticas, UMSNH

Email: anatolimx@gmail.com
Morelia Michoac´an, M´exico

P. Zhevandrov

Facultad de Ciencias Fisico-Matemáticas, UMSNH

Email: pzhevand@gmail.com
Morelia Michoac´an, M´exico

J. E. De la Paz Méndez

Escuela Superior de Matemáticas N.2, UAGro, Cd

Email: jeligio12@gmail.com
Altamirano Guerrero, M´exico

M. I. Romero Rodriguez

Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada

Author for correspondence.
Email: maria.romeror@unimilitar.edu.co
Bogota´ Colombia

References

  1. Малышев В. А. Случайные блуждания. Уравнения Винера-Хопфа в четверти плоскости. Автоморфизмы Галуа. - М.: МГУ, 1970.
  2. Babich V. M., Lyalinov M. A., Grikurov V. E. Di raction theory: The Sommerfeld-Malyuzhinets Technique. - Oxford: Alpha Science, 2008.
  3. Castro L. P., Kapanadze D. Dirichlet-Neumann impedance boundary-value problems arising in rectangular wedge di raction problems// Proc. Am. Math. Soc. - 2008. - 136. - C. 2113-2123.
  4. Castro L. P., Kapanadze D. Wave di raction by a 45 degree wedge sector with Dirichlet and Neumann boundary conditions// Math. Comput. Modelling. - 2008. - 48, № 1/2. - C. 114-121.
  5. Castro L. P., Kapanadze D. Wave di raction by a 270 degrees wedge sector with Dirichlet, Neumann and impedance boundary conditions// Proc. A. Razmadze Math. Inst. - 2011. - 155. - C. 96-99.
  6. Castro L. P., Speck F.-O., Teixeira F. S. On a class of wedge di raction problems posted by Erhard Meister// Oper. Theory Adv. Appl. - 2004. - 147. - C. 213-240.
  7. Castro L. P., Speck F.-O., Teixeira F. S. Mixed boundary value problems for the Helmholtz equation in a quadrant// Integral Equ. Oper. Theory. - 2006. - 56. - C. 1-44.
  8. Croisille J.-P., Lebeau G. Di raction by an elastic immersed wedge. - Berlin-Heidelberg: Springer, 1999.
  9. Kay I. The di raction of an arbitrary pulse by a wedge// Commun. Pure Appl. Math. - 1953. - 6.- C. 521-546.
  10. Komech A. I. Elliptic boundary value problems on manifolds with piecewise smooth boundary// Math. USSR Sb. - 1973. - 21. - C. 91-135.
  11. Merzon A. E., De la Paz M´endez J. E. DN-scattering of a plane wave by wedges// Math. Methods Appl. Sci. - 2011. - 34, № 15. - C. 1843-1872.
  12. Komech A. I., Mauser N. J., Merzon A. E. On Sommerfeld representation and uniqueness in scattering by wedges// Math. Methods Appl. Sci. - 2004. - 28. - C. 147-183.
  13. Komech A. I., Merzon A. E. Limiting amplitude principle in the scattering by wedges// Math. Methods Appl. Sci. - 2006. - 29, № 10. - C. 1147-1185.
  14. Komech A., Merzon A. Stationary di raction by wedges. - Cham: Springer, 2019.
  15. Komech A. I., Merzon A. E., De la Paz M´endez J. E. On uniqueness and stability of Sobolev’s solution in scattering by wedges// Z. Angew. Math. Phys. - 2015. - 66, № 5. - C. 2485-2498.
  16. Komech A. I., Merzon A. E., Esquivel Navarrete A., De la Paz M´endez J. E., Villalba Vega T. J. Sommerfeld’s solution as the limiting amplitude and asymptotics for narrow wedges// Math. Methods Appl. Sci. - 2018. - 42. - C. 4957-4970.
  17. Komech A. I., Merzon A. E., De la Paz M´endez J. E. Time-dependent scattering of generalized plane waves by wedges// Math. Methods Appl. Sci. - 2015. - 38, № 18. - C. 4774-4785.
  18. Meister E. Some solved and unsolved canonical problems of di raction theory// В сб.: «Di er. Equ. Math. Phys. Proc. Int. Conf., Birmingham, USA, March 3-8, 1986». - Berlin etc.: Springer, 1987. - С. 320-336.
  19. Meister E., Passow A., Rottbrand K. New results on wave di raction by canonical obstacles// Oper. Theory Adv. Appl. - 1999. - 110. - C. 235-256.
  20. Meister E., Penzel F., Speck F.-O., Teixeira F. S. Some interior and exterior boundary-value problems for the Helmholtz equations in a quadrant// Proc. Roy. Soc. Edinburgh Sect. A. - 1993. - 123, № 2. - C. 275-294.
  21. Meister E., Penzel F., Speck F.-O., Teixeira F. S. Two canonical wedge problems for the Helmholtz equation// Math. Methods Appl. Sci. - 1994. - 17. - C. 877-899.
  22. Meister E., Speck F.-O., Teixeira F. S. Wiener-Hopf-Hankel operators for some wedge di raction problems with mixed boundary conditions// J. Integral Equ. Appl. - 1992. - 4, № 2. - C. 229-255.
  23. Merzon A. E., Komech A. I., De la Paz M´endez J. E., Villalba T. J. On the Keller-Blank solution to the scattering problem of pulses by wedges// Math. Methods Appl. Sci. - 2015. - 38, № 10. - C. 2035-2040.
  24. Merzon A. E., Zhevandrov P. N., De la Paz M´endez J. E. On the behavior of the edge di racted nonstationary wave in scattering by wedges near the front// Russ. J. Math. Phys. - 2015. - 22, № 4. - C. 491-503.
  25. Muskhelishvili N. I. Singular integral equations. - Dordrecht: Springer, 1958.
  26. Penzel F., Teixeira F. S. The Helmholtz equation in a quadrant with Robin’s conditions// Math. Methods Appl. Sci. - 1999. - 22. - C. 201-216.
  27. Reed M., Simon B. Methods of modern mathematical physics II: Fourier analysis, self-adjointness. - New York: Academic Press, 1975.
  28. Sommerfeld A. Mathematical theory of di raction. - Boston: Birkha¨user, 2004.

Copyright (c) 2022 Merzon A., Zhevandrov P., De la Paz Méndez J.E., Romero Rodriguez M.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies