Boundary singular problems for quasilinear equations involving mixed reaction-diffusion
- Authors: Véron L.1
-
Affiliations:
- Institut Denis Poisson, Université de Tours
- Issue: Vol 68, No 4 (2022)
- Pages: 564-574
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/33491
- DOI: https://doi.org/10.22363/2413-3639-2022-68-4-564-574
Cite item
Full Text
Abstract
We study the existence of solutions to the problem
\[\label{eng_A1}
\begin{array}{rl}
-\Delta u+u^p-M|\nabla u|^q=0 & \text{in }\;\Omega,\\
u=\mu & \text{on }\;\partial\Omega
\end{array}\]
in a bounded domain \(\Omega\), where \(p>1\), \(1, \(M>0\), \(\mu\) is a nonnegative Radon measure in \(\partial\Omega\), and the associated problem with a boundary isolated singularity at \(a\in\partial\Omega,\)
\[\label{eng_A2}
\begin{array}{rl}
-\Delta u+u^p-M|\nabla u|^q=0 & \text{in }\;\Omega,\\
u=0 & \text{on }\;\partial\Omega\setminus\{a\}.
\end{array}\]
The difficulty lies in the opposition between the two nonlinear terms which are not on the same nature. Existence of solutions to [eng_A1] is obtained under a capacitary condition \[\mu(K)\leq
c\min\left\{cap^{\partial\Omega}_{\frac{2}{p},p'},cap^{\partial\Omega}_{\frac{2-q}{q},q'}\right\}\quad\text{for
all compacts }K\subset\partial\Omega.\] Problem [eng_A2] depends on several critical exponents on \(p\) and \(q\) as well as the position of \(q\) with respect to \(\dfrac{2p}{p+1}\).
About the authors
L. Véron
Institut Denis Poisson, Université de Tours
Author for correspondence.
Email: veronl@univ-tours.fr
Tours, France
References
- Adams D., Hedberg L. Function spaces and potential theory. - London-Berlin-Heidelberg-New York: Springer, 1996.
- Adams D. R., Pierre M. Capacitary strong type estimates in semilinear problems// Ann. Inst. Fourier (Grenoble). - 1991. - 41. - C. 117-135.
- Alarc´on S., Garc´ia-Melia´n J., Quaas A. Nonexistence of positive supersolutions to some nonlinear elliptic problems// J. Math. Pures Appl. - 2013. - 90. - C. 618-634.
- Baras P., Pierre M. Singularit´es ´eliminable pour des ´equations semi-lin´eaires// Ann. Inst. Fourier. - 1984. - 34, № 1. - C. 185-206.
- Bidaut-V´eron M. F., Garcia-Huidobro M., V´eron L. A priori estimates for elliptic equations with reaction terms involving the function and its gradient// Math. Ann. - 2020. - 378. - C. 13-58.
- Bidaut-V´eron M. F., Garcia-Huidobro M., V´eron L. Measure data problems for a class of elliptic equations with mixed absorption-reaction// Adv. Nonlinear. Stud. - 2020. - 21. - C. 261-280.
- Bidaut-V´eron M. F., Garcia-Huidobro M., V´eron L. Boundary singular solutions of a class of equations with mixed absorption-reaction// Calc. Var. Part. Di er. Equ. - 2022. - 61, № 3. - 113.
- Bidaut-V´eron M. F., Hoang G., Nguyen Q. H., V´eron L. An elliptic semilinear equation with source term and boundary measure data: the supercritical case// J. Funct. Anal. - 2015. - 269. - C. 1995-2017.
- Bidaut-V´eron M. F., Ponce A., V´eron L. Isolated boundary singularities of semilinear elliptic equations// Calc. Var. Part. Di er. Equ. - 2011. - 40. - C. 183-221.
- Bidaut-V´eron M. F., V´eron L. Trace and boundary singularities of positive solutions of a class of quasilinear equations// Discr. Cont. Dyn. Syst. - 2022. - в печати.
- Boccardo L., Murat F., Puel J. P. R´esultats d’existence pour certains probl`emes elliptiques quasilin´eaires// Ann. Sc. Norm. Super. Pisa Cl. Sci. (4). - 1984. - 11. - C. 213-235.
- Doob J. L. Classical Potential Theory and Its Probabilistic Counterpart. - London-Berlin-Heidelberg-New York: Springer, 1984.
- Gidas B., Spruck J. Global and local behaviour of positive solutions of nonlinear elliptic equations// Commun. Pure Appl. Math. - 1981. - 34. - C. 525-598.
- Gilbarg D., Trudinger N. Elliptic partial di erential equations of second order. - London-Berlin- Heidelberg-New York: Springer, 1983. Contemporary Mathematics. Fundamental Directions, 2022, Vol. 68, No. 4, 564-574 573
- Gmira A., V´eron L. Boundary singularities of solutions of some nonlinear elliptic equations// Duke Math. J. - 1991. - 64. - C. 271-324.
- Marcus M., Nguyen P. T. Elliptic equations with nonlinear absorption depending on the solution and its gradient// Proc. Lond. Math. Soc. - 2015. - 111. - C. 205-239.
- Marcus M., V´eron L. The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case// Arch. Ration. Mech. Anal. - 1998. - 144. - C. 200-231.
- Marcus M., V´eron L. Removable singularities and boundary traces// J. Math. Pures Appl. - 2001. - 80.- C. 879-900.
- Marcus M., V´eron L. Nonlinear elliptic equations involving measures. - Berlin: de Gruyter, 2014.
- Nguyen P. T., V´eron L. Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations// J. Funct. Anal. - 2012. - 263. - C. 1487-1538.
- V´eron L. Singular solutions of some nonlinear elliptic equations// Nonlinear Anal. - 1981. - 5. - C. 225-242.
- V´eron L. Local and global aspects of quasilinear degenerate elliptic equations. - Hackensack: World Scienti c, 2017.