Pseudo-Parabolic Regularization of Forward-Backward Parabolic Equations with Bounded Nonlinearities
- Authors: Tesei A.1
-
Affiliations:
- Istituto per le Applicazioni del Calcolo «M. Picone» Consiglio Nazionale delle Ricerche
- Issue: Vol 60, No (2016)
- Pages: 164-183
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/32588
Cite item
Full Text
Abstract
We study the initial-boundary value problem, with Radon measure-valued initial data, by assuming that the regularizing term ψ is increasing and bounded (the cases of power-type or logarithmic ψ were dealt with in [2, 3] in any space dimension). The function ϕ is nonmonotone and bounded, and either (i) decreasing and vanishing at in nity, or (ii) increasing at in nity. Existence of solutions in a space of positive Radon measures is proven in both cases. Moreover, a general result proving spontaneous appearance of singularities in case (i) is given. The case of a cubic-like ϕ is also discussed, to point out the in uence of the behavior at in nity of ϕ on the regularity of solutions.
About the authors
Alberto Tesei
Istituto per le Applicazioni del Calcolo «M. Picone» Consiglio Nazionale delle Ricerche
Email: albertotesei@gmail.com
Rome, Italy
References
- Barenblatt G. I., Bertsch M., Dal Passo R., Ughi M. A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably strati ed turbulent shear ow// SIAM J. Math. Anal. - 1993. - 24. - С. 1414-1439.
- Bertsch M., Smarrazzo F., Tesei A. Pseudo-parabolic regularization of forward-backward parabolic equations: a logarithmic nonlinearity// Anal. PDE. - 2013. - 6. - С. 1719-1754.
- Bertsch M., Smarrazzo F., Tesei A. Pseudo-parabolic regularization of forward-backward parabolic equations: power-type nonlinearities//j. Reine Angew. Math. - 2016. - 712. - С. 51-80.
- Bertsch M., Smarrazzo F., Tesei A. Forward-backward parabolic equations with pseudo-parabolic regularization and bounded nonlinearities decreasing at in nity: existence of solutions. - 2015, препринт.
- Bertsch M., Smarrazzo F., Tesei A. Pseudo-parabolic regularization of forward-backward parabolic equations: bounded nonlinearities increasing at in nity. - 2015, препринт.
- Bertsch M., Smarrazzo F., Tesei A. Forward-backward parabolic equations with pseudo-parabolic regularization and bounded nonlinearities decreasing at in nity: qualitative properties of solutions. - в печати.
- Brokate M., Sprekels J. Hysteresis and phase transitions. - Berlin: Springer, 1996.
- Evans L. C. Weak convergence methods for nonlinear partial di erential equations. - Providence: AMS, 1990.
- Giaquinta M., Modica G., Soucˇek J. Cartesian currents in the calculus of variations. - Berlin: Springer, 1998.
- Mascia C., Terracina A., Tesei A. Two-phase entropy solutions of a forward-backward parabolic equation// Arch. Ration. Mech. Anal. - 2009. - 194. - С. 887-925.
- Novick-Cohen A., Pego L. Stable patterns in a viscous di usion equation// Trans. Amer. Math. Soc. - 1991. - 324. - С. 331-351.
- Padro` n V. Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations// Comm. Partial Di erential Equations. - 1998. - 23. - С. 457-486.
- Perona P., Malik J. Scale space and edge detection using anisotropic di usion// IEEE Trans. Pattern Anal. Mach.Intell. - 1990. - 12. - С. 629-639.
- Plotnikov P. I. Passing to the limit with respect to viscosity in an equation with variable parabolicity direction// Di er. Equ. - 1994. - 30. - С. 614-622.
- Serre D. Systems of conservation laws. Vol. 1: hyperbolicity, entropies, shock waves. - Cambridge: Cambridge University Press, 1999.
- Smarrazzo F. On a class of equations with variable parabolicity direction// Discrete Contin. Dyn. Syst. - 2008. - 22. - С. 729-758.
- Smarrazzo F., Tesei A. Degenerate regularization of forward-backward parabolic equations: the regularized problem// Arch. Ration. Mech. Anal. - 2012. - 204. - С. 85-139.
- Smarrazzo F., Tesei A. Degenerate regularization of forward-backward parabolic equations: the vanishing viscosity limit// Math. Ann. - 2013. - 355. - С. 551-584.