Dissipation-induced instabilities in magnetized ows
- Authors: Kirillov O.N.1
-
Affiliations:
- Helmholtz-Zentrum Dresden Rossendorf
- Issue: Vol 60, No (2016)
- Pages: 82-101
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/32585
Cite item
Full Text
Abstract
We study local instabilities of a di erentially rotating viscous ow of electrically conducting incompressible uid subject to an external azimuthal magnetic eld. The hydrodynamically stable ow can be destabilized by the magnetic eld both in the ideal and in the viscous and resistive system giving rise to the azimuthal magnetorotational instability. A special solution to the equations of the ideal magnetohydrodynamics characterized by the constant total pressure, the uid velocity parallel to the direction of the magnetic eld, and by the magnetic and kinetic energies that are nite and equal - the Chandrasekhar equipartition solution - is marginally stable in the absence of viscosity and resistivity. Performing a local stability analysis we nd the conditions when the azimuthal magnetorotational instability can be interpreted as a dissipation-induced instability of the Chandrasekhar equipartition solution.
About the authors
O. N. Kirillov
Helmholtz-Zentrum Dresden Rossendorf
Email: o.kirillov@hzdr.de
Dresden, Germany
References
- Арнольд В. И. О матрицах, зависящих от параметра// Усп. мат. наук. - 1971. - 26, № 2. - С. 101-114.
- Balbus S. A., Hawley J. F. A powerful local shear instability in weakly magnetized disks 1. Linear analysis// Astrophys. J. - 1991. - 376. - С. 214-222.
- Balbus S. A., Hawley J. F. A powerful local shear instability in weakly magnetized disks 4. Nonaxisymmetric perturbations// Astrophys. J. - 1992. - 400. - С. 214-222.
- Beletsky V. V., Levin E. M. Stability of a ring of connected satellites// Acta Astron. - 1985. - 12.- С. 765-769.
- Bilharz H. Bemerkung zu einem Satze von Hurwitz// Z. Angew. Math. Mech. - 1944. - 24. - С. 77-82.
- Bloch A. M., Krishnaprasad P. S., Marsden J. E., Ratiu T. S. Dissipation-induced instabilities// Ann. Inst. H. Poincare´ Anal. Non Line´aire - 1994. - 11.- С. 37-90.
- Bogoyavlenskij O. I. Unsteady equipartition MHD solutions//j. Math. Phys. - 2004. - 45. - С. 381-390.
- Boldyrev S., Huynh D., Pariev V. Analog of astrophysical magnetorotational instability in a Couette-Taylor ow of polymer uids// Phys. Rev. E. - 2009. - 80. - 066310.
- Bolotin V. V. Nonconservative problems of the theory of elastic stability. - Oxford-London-New York- Paris: Pergamon Press, 1963.
- Bottema O. The Routh-Hurwitz condition for the biquadratic equation// Indag. Math. - 1956. - 18.- С. 403-406.
- Bridges T. J., Dias F. Enhancement of the Benjamin-Feir instability with dissipation// Phys. Fluids. - 2007. - 19. - 104104.
- Chandrasekhar S. On the stability of the simplest solution of the equations of hydromagnetics// Proc. Natl. Acad. Sci. USA. - 1956. - 42. - С. 273-276.
- Chandrasekhar S. The stability of nondissipative Couette ow in hydromagnetics// Proc. Natl. Acad. Sci. USA. - 1960. - 46. - С. 253-257.
- Chandrasekhar S. Hydrodynamic and hydromagnetic stability. - Oxford: Oxford University Press, 1961.
- Chandrasekhar S. A scienti c autobiography: S. Chandrasekhar. - Singapore: World Scienti c, 2010.
- Dobrokhotov S., Shafarevich A. Parametrix and the asymptotics of localized solutions of the Navier-Stokes equations in R3, linearized on a smooth ow// Math. Notes. - 1992. - 51. - С. 47-54.
- Ebrahimi F., Lefebvre B., Forest C. B., Bhattacharjee A. Global Hall-MHD simulations of magnetorotational instability in the plasma Couette ow experiment// Phys. Plasmas. - 2011. - 18. - 062904.
- Eckhardt B., Yao D. Local stability analysis along Lagrangian paths// Chaos Solitons Fractals. - 1995. - 5, №11. - С. 2073-2088.
- Eckho K. S. On stability for symmetric hyperbolic systems, I//j. Di erential Equations. - 1981. - 40.- С. 94-115.
- Eckho K. S. Linear waves and stability in ideal magnetohydrodynamics// Phys. Fluids. - 1987. - 30.- С. 3673-3685.
- Friedlander S., Vishik M. M. On stability and instability criteria for magnetohydrodynamics// Chaos. - 1995. - 5. - С. 416-423.
- Golovin S. V., Krutikov M. K.Complete classi cation of stationary ows with constant total pressure of ideal incompressible in nitely conducting uid//j. Phys. A. - 2012. - 45. - 235501.
- Ji H., Balbus S. Angular momentum transport in astrophysics and in the lab// Phys. Today. - 2013. - August 2013. - С. 27-33.
- Kapitsa P. L. Stability and passage through the critical speed of the fast spinning rotors in the presence of damping// Z. Tech. Phys. - 1939. - 9. - С. 124-147.
- Kirillov O. N. Campbell diagrams of weakly anisotropic exible rotors// Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. - 2009. - 465. - С. 2703-2723.
- Kirillov O. N. Stabilizing and destabilizing perturbations of PT-symmetric inde nitely damped systems// Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. - 2013. - 371. - 20120051.
- Kirillov O. N. Nonconservative stability problems of modern physics. - Berlin-Boston: De Gruyter, 2013.
- Kirillov O. N., Seyranian A. P. Metamorphoses of characteristic curves in circulatory systems//j. Appl. Math. Mech. - 2002. - 66, №3. - С. 371-385.
- Kirillov O. N., Stefani F. On the relation of standard and helical magnetorotational instability// Astrophys. J. - 2010. - 712.- С. 52-68.
- Kirillov O. N., Stefani F. Standard and helical magnetorotational instability: How singularities create paradoxal phenomena in MHD// Acta Appl. Math. - 2012. - 120. - С. 177-198.
- Kirillov O. N., Stefani F. Extending the range of the inductionless magnetorotational instability// Phys. Rev. Lett. - 2013. - 111. - 061103.
- Kirillov O. N., Stefani F., Fukumoto Y. A unifying picture of helical and azimuthal MRI, and the universal signi cance of the Liu limit// Astrophys. J. - 2012. - 756.- С. 83.
- Kirillov O. N., Stefani F., Fukumoto Y. Instabilities of rotational ows in azimuthal magnetic elds of arbitrary radial dependence// Fluid Dyn. Res. - 2014. - 46. - 031403.
- Kirillov O. N., Stefani F., Fukumoto Y. Local instabilities in magnetized rotational ows: A shortwavelength approach//j. Fluid Mech. - 2014. - 760. - С. 591-633.
- Kirillov O. N., Verhulst F. Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella?// Z. Angew. Math. Mech. - 2010. - 90, №6. - С. 462-488.
- Krechetnikov R., Marsden J. E. Dissipation-induced instabilities in nite dimensions// Rev. Modern Phys. - 2007. - 79, №2. - С. 519-553.
- Krueger E. R., Gross A., Di Prima R. C. On relative importance of Taylor-vortex and nonaxisymmetric modes in ow between rotating cylinders//j. Fluid Mech. - 1966. - 24, №3. - С. 521-538.
- Kucherenko V. V., Kryvko A.Interaction of Alfv´en waves in the linearized system of magnetohydrodynamics for an incompressible ideal uid// Russ. J. Math. Phys. - 2013. - 20, №1. - С. 56-67.
- Landman M. J., Sa man P. G. The three-dimensional instability of strained vortices in a viscous uid// Phys. Fluids. - 1987. - 30. - С. 2339-2342.
- Langford W. F. Hopf meets Hamilton under Whitney’s umbrella// Solid Mech. Appl. - 2003. - 110.- С. 157-165.
- Latter H. N., Rein H., Ogilvie G. I. The gravitational instability of a stream of coorbital particles// Mon. Not. R. Astron. Soc. - 2012. - 423. - С. 1267-1276.
- Liu W., Goodman J., Herron I., Ji H. Helical magnetorotational instability in magnetized Taylor-Couette ow// Phys. Rev. E. - 2006. - 74, №1. - 056302.
- MacKay R. S. Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation// Phys. Lett. A. - 1991. - 155. - С. 266-268.
- Maddocks J. H., Overton M. L. Stability theory for dissipatively perturbed Hamiltonian systems// Comm. Pure Appl. Math. - 1995. - 48. - С. 583-610.
- Michael D. H. The stability of an incompressible electrically conducting uid rotating about an axis when current ows parallel to the axis// Mathematika. - 1954. - 1. - С. 5-50.
- Montgomery D. Hartmann, Lundquist, and Reynolds: The role of dimensionless numbers in nonlinear magneto uid behavior// Plasma Phys. Control. Fusion. - 1993. - 35. - С. B105-B113.
- Ogilvie G. I., Pringle J. E. The nonaxisymmetric instability of a cylindrical shear ow containing an azimuthal magnetic eld// Mon. Not. R. Astron. Soc. - 1996. - 279. - С. 152-164.
- Ogilvie G. I., Potter A. T. Magnetorotational-type instability in Couette-Taylor ow of a viscoelastic polymer liquid// Phys. Rev. Lett. - 2008. - 100. - 074503.
- Ogilvie G. I., Proctor M. R. E. On the relation between viscoelastic and magnetohydrodynamic ows and their instabilities//j. Fluid Mech. - 2003. - 476. - С. 389-409.
- Rayleigh J. W. S. On the dynamics of revolving uids// Proc. R. Soc. Lond. A. - 1917. - 93. - С. 148-154.
- Ru¨ diger G., Gellert M., Schultz M., Hollerbach R. Dissipative Taylor-Couette ows under the in uence of helical magnetic elds// Phys. Rev. E. - 2010. - 82. - 016319.
- Ru¨ diger G., Gellert M., Schultz M., Hollerbach R., Stefani F. The azimuthal magnetorotational instability (AMRI)// Mon. Not. R. Astron. Soc. - 2014. - 438. - С. 271-277.
- Ru¨ diger G., Kitchatinov L., Hollerbach R. Magnetic processes in astrophysics. - New York: Wiley-VCH, 2013.
- Seilmayer M., Galindo V., Gerbeth G., Gundrum T., Stefani F., Gellert M., Ru¨ diger G., Schultz M., Hollerbach R. Experimental evidence for nonaxisymmetric magnetorotational instability in an azimuthal magnetic eld// Phys. Rev. Lett. - 2014. - 113. - 024505.
- Smith D. M. The motion of a rotor carried by a exible shaft in exible bearings// Proc. R. Soc. Lond. A. - 1933. - 142. - С. 92-118.
- Squire J., Bhattacharjee A. Nonmodal growth of the magnetorotational instability// Phys. Rev. Lett. - 2014. - 113. - 025006.
- Stefani F., Gailitis A., Gerbeth G. Magnetohydrodynamic experiments on cosmic magnetic elds// Z. Angew. Math. Mech. - 2008. - 88. - С. 930-954.
- Swaters G. E. Modal interpretation for the Ekman destabilization of inviscidly stable baroclinic ow in the Phillips model//j. Phys. Oceanogr. - 2010. - 40. - С. 830-839.
- Thorpe S. A., Smyth W. D., Li L. The e ect of small viscosity and di usivity on the marginal stability of stably strati ed shear ows//j. Fluid Mech. - 2013. - 731. - С. 461-476.
- Velikhov E. P. Stability of an ideally conducting liquid owing between cylinders rotating in a magnetic eld// Sov. Phys. JETP-USSR - 1959. - 9. - С. 995-998.
- Vishik M., Friedlander S. Asymptotic methods for magnetohydrodynamic instability// Quart. Appl. Math. - 1998. - 56. - С. 377-398.
- Yakubovich V. A., Starzhinskii V. M. Linear di erential equations with periodic coe cients. - New York: Wiley, 1975.
- Ziegler H. Die Stabilita¨tskriterien der Elastomechanik// Ing.-Arch. - 1952. - 20. - С. 49-56.
- Zou R., Fukumoto Y. Local stability analysis of the azimuthal magnetorotational instability of ideal MHD ows// Prog. Theor. Exp. Phys. - 2014. - 113J01.