Magnetic Schro¨dinger Operator from the Point of View of Noncommutative Geometry


Cite item

Abstract

We give an interpretation of magnetic Schro¨dinger operator in terms of noncommutative geometry. In particular, spectral properties of this operator are reformulated in terms of C∗-algebras. Using this reformulation, one can employ the machinery of noncommutative geometry, such as Hochschild cohomology, to study the properties of magnetic Schro¨dinger operator. We show how this idea can be applied to the integer quantum Hall e ect.

About the authors

A. G. Sergeev

Steklov Mathematical Institute

Email: sergeev@mi.ras.ru
Moscow, Russia

References

  1. Bellissard J., van Elst A., Schulz-Baldes H. The noncommutative geometry of the quantum Hall e ect//j. Math. Phys. - 1994. - 35. - C. 5373-5451.
  2. Berezin F. A., Shubin V. A. The Schro¨dinger equation. - Boston: Kluwer, 1991.
  3. Connes A. Noncommutative geometry. - San Diego: Academic Press, 1994.
  4. Gruber M. Noncommutative Bloch theory//j. Math. Phys. - 2001. - 42. - С. 2438-2465.
  5. Husemoller D. Fibre bundles. - New York: Springer, 1994.
  6. Kordyukov Yu., Mathai V., Shubin M. A. Equivalence of spectral properties in semiclassical limit and a vanishing theorem for higher traces in K-theory//j. Reine Angew. Math. - 2005. - 581. - C. 193-236.
  7. Laughlin B. Quantized Hall conductivity in two dimensions// Phys. Rev. - 1981. - B23. - С. 5232.
  8. Thouless D. J., Kohmono M., Nightingale M. P., den Nijs M. Quantized Hall conductance in a twodimensional periodic potential// Phys. Rev. Lett. - 1982. - 49. - C. 405-408.
  9. Xia J. Geometric invariants of the quantum Hall e ect// Commun. Math. Phys. - 1988. - 119.- C. 29- 50.

Copyright (c) 2022 Contemporary Mathematics. Fundamental Directions

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies