Fokas Method for the Heat Equation on Metric Graphs

Cover Page

Cite item

Abstract

The paper presents a method for constructing solutions to initial-boundary value problems for the heat equation on simple metric graphs such as a star-shaped graph, a tree, and a triangle with three converging edges. The solutions to the problems are constructed by the so-called Fokas method, which is a generalization of the Fourier transform method. In this case, the problem is reduced to a system of algebraic equations for the Fourier transform of the unknown values of the solution at the vertices of the graph.

About the authors

Z. A. Sobirov

National University of Uzbekistan named after M. Ulugbek

Author for correspondence.
Email: z.sobirov@nuu.uz
Tashkent, Uzbekistan

M. R. Eshimbetov

National University of Uzbekistan named after M. Ulugbek

Email: mr.eshimbetov92@gmail.com
Tashkent, Uzbekistan

References

  1. Волкова А. С. Обобщенные решения краевой задачи для уравнения теплопроводности на графе// Вестн. СПб. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр. - 2013. - 3. - С. 39-47.
  2. Мерков А. Б. Уравнение теплопроводности на графах// Усп. мат. наук. - 1987. -42, № 5. - С. 213-214.
  3. Ablowitz M. J., Fokas A. S. Complex variables introduction and applications second edition. - Cambridge: Cambridge Univ. Press, 2003.
  4. Albert R., Barabasi A. L. Statistical mechanics of complex networks// Rev. Mod. Phys. A. - 2002. -74, № 4. - С. 62-76.
  5. Berkolaiko G. An elementary introduction to quantum graphs// В сб.: «Geometric and Computational Spectral Theory». - Providence: Am. Math. Soc., 2017. - С. 41-72.
  6. Cohen R., Havlin S. Complex networks: Structure, robustness and function. - Cambridge: Cambridge Univ. Press, 2010.
  7. Exner P., Post O. A General approximation of quantum graph vertex couplings by scaled Schrodinger¨ operators on thin branched manifolds// Commun. Math. Phys. - 2013. -1322. - С. 207-227.
  8. Fokas A. S. A unified transform method for solving linear and certain nonlinear PDEs// Proc. R. Soc. Lond. Ser. A. - 1997. -453, № 1962. - С. 1411-1443.
  9. Fokas A. S. A unified approach to boundary value problems. - Philadelphia: SIAM, 2008.
  10. Fokas A. S. Fokas method (unified transform)// Preprint. - Jan. 25, 2017. - http://www.damtp.cam.ac. uk/user/examples/3N15.pdf.
  11. Gnutzmann S., Keating J. P., Piotet F. Eigenfunction statistics on quantum graphs// Ann. Phys. - 2010. - 325, № 12. - С. 2595-2640.
  12. Gnutzmann S., Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics// Adv. Phys. - 2006. -55. - С. 527-625.
  13. Kesici E., Pelloni B., Pryer T., Smith D. A. A numerical implementation of the unified Fokas transform for evolution problems on a finite interval// Eur. J. Appl. Math. - 2017. -29, № 3. - С. 543-567.
  14. Khudayberganov G., Sobirov Z. A., Eshimbetov M. R. Unified transform method for the Schrodinger¨ equation on a simple metric graph// Журн. СФУ. Сер. Мат. Физ. - 2019. -12, № 4. - С. 412-420.
  15. Khudayberganov G., Sobirov Z. A., Eshimbetov M. R. The Fokas’ unified transformation method for heat equation on general star graph// Uzb. Math. J. - 2019. - № 1. - С. 73-81.
  16. Sheils N. E. Interface problems using the Fokas method// Дисс. докт. наук. - Washington: University of Washington, 2015.
  17. Sheils N. E. Multilayer diffusion in a composite medium with imperfect contact// Appl. Math. Modelling. - 2017. -46. - C. 450-464.
  18. Sheils N. E., Smith A. D. Heat equation on a network using the Fokas method// J. Phys. A. Math. Theor. - 2015. -48. - 335001.
  19. Uecker H., Grieser D., Sobirov Z. A., Babajanov D., Matrasulov D. Soliton transport in tubular networks: Transmission at vertices in the shrinking limit// Phys. Rev. E. - 2015. -91. - 023209.

Copyright (c) 2022 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies