Statistical Ergodic Theorem in Symmetric Spaces for Infinite Measures
- Authors: Veksler A.S.1, Chilin V.I.1
-
Affiliations:
- Institute of Mathematics of the Academy of Sciences of Uzbekistan
- Issue: Vol 67, No 4 (2021): Science — Technology — Education — Mathematics — Medicine
- Pages: 654-667
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/30077
- DOI: https://doi.org/10.22363/2413-3639-2021-67-4-654-667
Cite item
Full Text
Abstract
Let (Ω,μ) be a measurable space with σ -finite continuous measure, μ(Ω)=∞. A linear operator T:L1(Ω)+L∞(Ω)→L1(Ω)+L∞(Ω) is called the Dunford-Schwartz operator if ||T(f)||1<||f||1 (respectively, ||T(f)||∞<||f||∞) for all f∈L1(Ω) (respectively, f∈L∞(Ω)). {Tt}t>0 is a strongly continuous in L1(Ω) semigroup of Dunford-Schwartz operators, then each operator has a unique extension to the Dunford-Schwartz operator, which is also denoted by At, t>0. It is proved that in the completely symmetric space of measurable functions on (Ω,μ) the means At converge strongly as t→+∞ for each strongly continuous in L1(Ω) semigroup {Tt}t>0 of Dunford-Schwartz operators if and only if the norm ||.||E(Ω) is order continuous.
About the authors
A. S. Veksler
Institute of Mathematics of the Academy of Sciences of Uzbekistan
Author for correspondence.
Email: aleksandr.veksler@micros.uz
Tashkent, Uzbekistan
V. I. Chilin
Institute of Mathematics of the Academy of Sciences of Uzbekistan
Email: vladimirchil@gmail.com
Tashkent, Uzbekistan
References
- Векслер А. С. Эргодическая теорема в симметричных пространствах// Сиб. мат. ж. - 1985. - 26, № 4. - С. 189-191.
- Векслер А. С. Статистическая эргодическая теорема в несепарабельных симметричных пространствах функций// Сиб. мат. ж. - 1988. -29, № 3. - С. 183-185.
- Векслер А. С. Статистические эргодические теоремы в перестановочно-инвариантных пространствах измеримых функций. - Beau Bassin: Lambert Academic Publishing, 2018.
- Векслер А. С., Федоров А. Л. Симметрические пространства и статистические эргодические теоремы для автомофизмов и потоков. - Ташкент: ФАН, 2016.
- Канторович Л. В., Акилов Г. П. Функциональный анализ. - М.: Наука, 1977.
- Bennett C., Sharpley R. Interpolation of operators. - Boston, etc.: Academic Press Inc., 1988.
- Chilin V., Comez¨ D., Litvinov S. Individual ergodic theorems for infinite measure// ArXiv. - 2019. - 1907.04678v1 [math.FA].
- Chilin V., Litvinov S. Noncommutative weighted individual ergodic theorems with continuous time// ArXiv. - 2018. - 1809.01788v1 [math.FA].
- Chilin V., Litvinov S. Almost uniform and strong convergences in ergodic theorems for symmetric spaces// Acta Math. Hungar. - 2019. -157, № 1. - С. 229-253.
- Chilin V., Litvinov S. Noncommutative weighted individual ergodic theorems with continuous time// Infin. Dimens. Anal. Quantum Probab. Relat. Top. - 2020. -23, № 2. - 2050013.
- Chilin V. I., Veksler A. S. Mean ergodic theorem in function symmetric spaces for infinite measure// Uzb. Math. J. - 2018. - № 1. - С. 35-46.
- Dodds P. G., Dodds T. K., Pagter B. Noncommutative Kothe duality// Trans. Am. Math. Soc. - 1993. -¨ 339. - С. 717-750.
- Dodds P. G., Dodds T. K., Sukochev F. A. Banach-Saks properties in symmetric spaces of measurable operators// Studia Math. - 2007. -178. - С. 125-166.
- Dunford N., Schwartz J. T. Linear operators. Part I: General theory. - New York, etc.: John Willey & Sons, 1988.
- Garsia A. Topics in almost everywhere convergence. - Chicago: Markham Publishing Company, 1970.
- Krein S. G., Petunin Ju. I., Semenov E. M. Interpolation of linear operators. - Providence: Am. Math. Soc., 1982.
- Krengel U. Ergodic theorems. - Berlin-New York: Walter de Gruyter, 1985.
- Rubshtein B. A., Muratov M. A., Grabarnik G. Ya., Pashkova Yu. S. Foundations of symmetric spaces of measurable functions. Lorentz, Marcinkiewicz and Orlicz spaces. - Cham: Springer, 2016.
- Sukochev F., Veksler A. The Mean Ergodic Theorem in symmetric spaces// C.R. Acad. Sci. Paris. Ser. I. - 2017. -355. - С. 559-562.
- Sukochev F., Veksler A. The Mean Ergodic Theorem in symmetric spaces// Studia Math. - 2019. -245, № 3. - С. 229-253.
- Vladimirov D. A. Boolean algebras in analysis. - Dordrecht: Kluwer Academic Publishers, 2002.
- Yosida K. Functional analysis. - Berlin-Gottingen-Heidelberg: Springer Verlag, 1965.¨