On Periodic Solutions of One Second-Order Differential Equation

Cover Page

Cite item

Abstract

In this paper, we investigate the movement of an inverted pendulum, the suspension point of which performs high-frequency oscillations along a line making a small angle with the vertical. We prove that under certain conditions on the function describing the oscillations of the suspension point of the pendulum, a periodic motion of the pendulum arises, and it is asymptotically stable.

About the authors

G. V. Demidenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: demidenk@math.nsc.ru
Novosibirsk, Russia

A. V. Dulepova

Novosibirsk State University

Email: nasty731@gmail.com
Novosibirsk, Russia

References

  1. Боголюбов Н. Н. О некоторых статистических методах в математической физике. - Киев: Изд-во АН УССР, 1945.
  2. Боголюбов Н. Н. Теория возмущений в нелинейной механике// Сб. тр. Ин-та строительной механики АН УССР. - 1950. - 14.- С. 9-34.
  3. Боголюбов Н. Н., Митропольский Ю. А. Асимптотические методы теории нелинейных колебаний. - М.: Физматлит, 1963.
  4. Бурд В. Ш. Метод усреднения на бесконечном промежутке и некоторые задачи теории колебаний. - Ярославль: ЯрГУ, 2013.
  5. Далецкий Ю. Л., Крейн М. Г. Устойчивость решений дифференциальных уравнений в банаховом пространстве. - М.: Наука, 1970.
  6. Демиденко Г. В., Матвеева И. И. Об устойчивости решений линейных систем с периодическими коэффициентами// Сиб. мат. ж. - 2001. - 42, № 2. - С. 332-348.
  7. Демиденко Г. В., Матвеева И. И. Об устойчивости решений квазилинейных периодических систем дифференциальных уравнений// Сиб. мат. ж. - 2004. - 45, № 6. - С. 1271-1284.
  8. Митропольский Ю. А., Хома Г. П. Математическое обоснование асимптотических методов нелинейной механики. - Киев: Наукова Думка, 1983.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies