An Improved Blow-Up Criterion for the Magnetohydrodynamics with the Hall and Ion-Slip Effects

Cover Page

Cite item

Abstract

In this work, we consider the magnetohydrodynamics system with the Hall and ion-slip effects in R3. The main result is a sufficient condition for regularity on a time interval [0,T] expressed in terms ∞,∞ of the norm of the homogeneous Besov space B˙,0{\dot{B}_{\infty,\infty}^0} with respect to the pressure and the BMO-norm with respect to the gradient of the magnetic field, respectively

0T(Δπ(t)B˙,02/3+ΔB(t)BMO2)dt<{\int_{0}^{T} ({\| \Delta \pi(t)\|}^{2/3}_{\dot{B}_{\infty,\infty}^0} + {\| \Delta B (t)\|}^{2}_{BMO} ) dt<\infty},

which can be regarded as improvement of the result in [3].

About the authors

S. Gala

Ecole Normale Supe'rieure of Mostaganem; Universita' di Catania

Author for correspondence.
Email: sadek.gala@gmail.com
Mostaganem, Algeria; Catania, Italy

M. A. Ragusa

Universita' di Catania; RUDN University

Email: maragusa@dmi.unict.it
Catania, Italy; Moscow, Russia

References

  1. Beale J., Kato T., Majda A. Remarks on breakdown of smooth solutions for the three-dimensional Euler equations// Commun. Math. Phys. - 1984. - 94. - С. 61-66.
  2. Chemin J.-Y. Perfect incompressible fluids. - New York: Clarendon Press & Oxford University Press, 1998.
  3. Fan J., Jia X., Nakamura G., Zhou Y. On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects// Z. Angew. Math. Phys. - 2015. - 66. - С. 1695-1706.
  4. Gala S., Ragusa M. A. On the blow-up criterion of strong solutions for the MHD equations with the Hall and ion-slip effects in R3// Z. Angew. Math. Phys. - 2016. - 67.- С. 18.
  5. Kozono H., Taniuchi Y. Bilinear estimates in BMO and the Navier-Stokes equations// Math. Z. - 2000. - 235. - С. 173-194.
  6. Maiellaro M. Uniqueness of MHD thermodiffusive mixture flows with Hall and ion-slip effects// Meccanica. - 1977. - 12.- С. 9-14.
  7. Mulone G., Salemi F. Some continuous dependence theorems in MHD with Hall and ion-slip currents in unbounded domains// Rend. Accad. Sci. Fis. Mat. Napoli. - 1988. - 55. - С. 139-152.
  8. Mulone G., Solonnikov V. A. On an initial boundary-value problem for the equation of magnetohydrodynamics with the Hall and ion-slip effects// J. Math. Sci. (N.Y.). - 1997. - 87. - С. 3381-3392.
  9. Triebel H. Theory of function spaces. - Basel: Birkha¨user, 1983.
  10. Zhou Y. Regularity criteria for the 3D MHD equations in terms of the pressure// Int. J. Nonlinear Mech. - 2006. - 41. - С. 1174-1180.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies