Semigroups of Operators Generated by Integro-Differential Equations with Kernels Representable by Stieltjes Integrals

Cover Page

Cite item

Abstract

Abstract Volterra integro-differential equations with kernels of integral operators representable by Stieltjes integrals are investigated. The presented results are based on the approach related to the study of one-parameter semigroups for linear evolution equations. We present the method of reduction of the original initial-value problem for a model integro-differential equation with operator coefficients in a Hilbert space to the Cauchy problem for a first-order differential equation in an extended function space. The existence of the contractive C0-semigroup is proved. An estimate for the exponential decay of the semigroup is obtained.

About the authors

V. V. Vlasov

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Author for correspondence.
Email: victor.vlasov@math.msu.ru
Moscow, Russia

N. A. Rautian

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Email: nadezhda.rautian@math.msu.ru
Moscow, Russia

References

  1. Беллман Р. Теория устойчивости решений дифференциальных уравнений. - М.: ИЛ, 1954.
  2. Власов В. В., Раутиан Н. А. Спектральный анализ функционально-дифференциальных уравнений. - М.: МАКС Пресс, 2016.
  3. Ильюшин А. А., Победря Б. Е. Основы математической теории термовязкоупругости. - М.: Наука, 1970.
  4. Като Т. Теория возмущений линейных операторов. - М.: Мир, 1972.
  5. Крейн С. Г. Линейные дифференциальные уравнения в банаховом пространстве. - М.: Наука, 1967.
  6. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. - М.: Наука, 1989.
  7. Локшин А. А., Суворова Ю. В. Математическая теория распространения волн в средах с памятью. - М.: МГУ, 1982.
  8. Лыков А. В. Некоторые проблемные вопросы теории тепломассопереноса// В сб.: «Проблемы теплои массопереноса». - Минск: Наука и техника, 1976. - С. 9-82.
  9. Работнов Ю. Н. Элементы наследственной механики твердых тел. - М.: Наука, 1977.
  10. Санчес Паленсия Э. Неоднородные среды и теория колебаний. - М.: Мир, 1984.
  11. Смирнов В. И. Курс высшей математики. Т. 5. - М.: Наука, 1974.
  12. Amendola G., Fabrizio M., Golden J. M. Thermodynamics of materials with memory. Theory and applications. - New-York-Dordrecht-Heidelberg-London: Springer, 2012.
  13. Christensen R. M. Theory of viscoelasticity. An introduction. - New York-London: Academic Press, 1971.
  14. Dafermos C. M. Asymptotic stability in viscoelasticity// Arch. Ration. Mech. Anal. - 1970. - 37. - С. 297- 308.
  15. Engel K.-J., Nagel R. One-parameter semigroup for linear evolution equations. - New York: Springer, 1999.
  16. Eremenko A., Ivanov S. Spectra of the Gurtin-Pipkin type equations// SIAM J. Math. Anal. - 2011. - 43. - С. 2296-2306.
  17. Gurtin M. E., Pipkin A. C. General theory of heat conduction with finite wave speed// Arch. Ration. Mech. Anal. - 1968. - 31. - С. 113-126.
  18. Kopachevsky N. D., Krein S. G. Operator approach to linear problems of hydrodynamics. Vol. 2: Nonselfadjoint problems for viscous fluids. - Basel: Birkha¨user, 2003.
  19. Miller R. K. An integrodifferencial equation for rigid heat conductors with memory// J. Math. Anal. - 1978. - 66. - С. 313-332.
  20. Munoz Rivera J. E., Naso M. G., Vegni F. M. Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory// J. Math. Anal. Appl. - 2003. - 286. - С. 692-704.
  21. Pata V. Stability and exponential stability in linear viscoelasticity // Milan J. Math. - 2009. - 77.- С. 333-360.
  22. Rautian N. A. Semigroups generated by Volterra integro-differential equations// Differ. Equ. - 2020. - 56, № 9. - C. 1193-1211.
  23. Tretter C. Spectral theory of block operator matrices and applications. - Imperial College Press: London, 2008.
  24. Vlasov V. V., Rautian N. A. Spectral analysis of integrodifferential equations in Hilbert spaces// J. Math. Sci. (N.Y.). - 2019. - 239, № 5. - С. 771-787.
  25. Vlasov V. V., Rautian N. A. On Volterra integro-differential equations with kernels representable by Stieltjes integrals// Differ. Equ. - 2021. - 57, № 4. - С. 517-532.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies