Delay Differential Equations with Differentiable Solution Operators on Open Domains in C((-∞, 0], Rn) and Processes for Volterra Integro-Differential Equations
- Authors: Walther H.1
-
Affiliations:
- Universitat Gießen
- Issue: Vol 67, No 3 (2021): Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov
- Pages: 483-506
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/28996
- DOI: https://doi.org/10.22363/2413-3639-2021-67-3-483-506
Cite item
Full Text
Abstract
For autonomous delay differential equations we construct a continuous semiflow of continuously differentiable solution operators , , on open subsets of the Fre´chet space . For nonautonomous equations this yields a continuous process of differentiable solution operators. As an application, we obtain processes which incorporate all solutions of Volterra integro-differential equations .
About the authors
Hans-Otto Walther
Universitat Gießen
Author for correspondence.
Email: Hans-Otto.Walther@math.uni-giessen.de
Gießen, Germany
References
- Bastiani A. Applications diffe´rentiables et variete´s de dimension infinie// J. Anal. Math. - 1964. - 13.- С. 1-114.
- Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H.-O. Delay equations: functional-, complexand nonlinear analysis. - New York: Springer, 1995.
- Hale J. K., Verduyn Lunel S. M. Introduction to Functional Differential Equations. - New York: Springer, 1993.
- Hamilton R. S. The inverse function theorem of Nash and Moser// Bull. Am. Math. Soc. (N.S.). - 1982. - 7. - С. 65-222.
- Hino Y., Murakami S., Naito T. Functional Differential Equations with Infinite Delay. - Berlin: Springer, 1991.
- Krisztin T. Личное общение.
- Krisztin T., Walther H. O. Smoothness issues in differential equations with state-dependent delay// Rend. Istit. Mat. Univ. Trieste. - 2017. - 49. - С. 95-112.
- Matsunaga H., Murakami S., Nagabuchi Y., Nguyen V. M. Center manifold theorem and stability for integral equations with infinite delay// Funkcial. Ekvac. - 2015. - 58. - С. 87-134.
- Michal A. D. Differential calculus in linear topological spaces// Proc. Natl. Acad. Sci. USA. - 1938. - 24. - С. 340-342.
- Rudin W. Functional analysis. - New York: McGraw-Hill, 1973.
- Schumacher K. Existence and continuous dependence for functional-differential equations with unbounded delay// Arch. Ration. Mech. Anal. - 1978. - 67. - С. 315-335.
- Sengadir T. Semigroups on Fre´chet spaces and equations with infinite delay// Proc. Indian Acad. Sci. Math. Sci.- 2007.- 117.- С. 71-84.
- Walther H.-O. Differential equations with locally bounded delay// J. Differ. Equ. - 2012. - 252. - С. 3001- 3039.
- Walther H. O. Semiflows for differential equations with locally bounded delay on solution manifolds in the space C1((-∞, 0], Rn)// Topol. Methods Nonlinear Anal. - 2016. - 48. - С. 507-537.
- Walther H. O. Local invariant manifolds for delay differential equations with state space in C1((-∞, 0], Rn)// Electron. J. Qual. Theory Differ. Equ. - 2016. - 85.- С. 1-29.
- Walther H. O. Maps which are continuously differentiable in the sense of Michal and Bastiani but not of Fre´chet// Contemp. Math. Fundam. Directions. - 2017. - 63. - С. 543-556.
- Walther H. O. Differentiability in Fre´chet spaces and delay differential equations// Electron. J. Qual. Theory Differ. Equ. - 2019. - 13. - С. 1-44.