Delay Differential Equations with Differentiable Solution Operators on Open Domains in C((-∞, 0], Rn) and Processes for Volterra Integro-Differential Equations

Cover Page

Cite item

Abstract

For autonomous delay differential equations x'(t)=f(xt){x'(t)=f(x_t)} we construct a continuous semiflow of continuously differentiable solution operators x0xt{x_0 \to x_t}, t0{t \le 0}, on open subsets of the Fre´chet space C((-,0],Rn){C((-\infty, 0], R^n)}. For nonautonomous equations this yields a continuous process of differentiable solution operators. As an application, we obtain processes which incorporate all solutions of Volterra integro-differential equations x'(t)=0tk(t,s)h(x(s))ds{x'(t)={\int_0}^t k(t,s) h(x(s)) ds}.

About the authors

Hans-Otto Walther

Universitat Gießen

Author for correspondence.
Email: Hans-Otto.Walther@math.uni-giessen.de
Gießen, Germany

References

  1. Bastiani A. Applications diffe´rentiables et variete´s de dimension infinie// J. Anal. Math. - 1964. - 13.- С. 1-114.
  2. Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H.-O. Delay equations: functional-, complexand nonlinear analysis. - New York: Springer, 1995.
  3. Hale J. K., Verduyn Lunel S. M. Introduction to Functional Differential Equations. - New York: Springer, 1993.
  4. Hamilton R. S. The inverse function theorem of Nash and Moser// Bull. Am. Math. Soc. (N.S.). - 1982. - 7. - С. 65-222.
  5. Hino Y., Murakami S., Naito T. Functional Differential Equations with Infinite Delay. - Berlin: Springer, 1991.
  6. Krisztin T. Личное общение.
  7. Krisztin T., Walther H. O. Smoothness issues in differential equations with state-dependent delay// Rend. Istit. Mat. Univ. Trieste. - 2017. - 49. - С. 95-112.
  8. Matsunaga H., Murakami S., Nagabuchi Y., Nguyen V. M. Center manifold theorem and stability for integral equations with infinite delay// Funkcial. Ekvac. - 2015. - 58. - С. 87-134.
  9. Michal A. D. Differential calculus in linear topological spaces// Proc. Natl. Acad. Sci. USA. - 1938. - 24. - С. 340-342.
  10. Rudin W. Functional analysis. - New York: McGraw-Hill, 1973.
  11. Schumacher K. Existence and continuous dependence for functional-differential equations with unbounded delay// Arch. Ration. Mech. Anal. - 1978. - 67. - С. 315-335.
  12. Sengadir T. Semigroups on Fre´chet spaces and equations with infinite delay// Proc. Indian Acad. Sci. Math. Sci.- 2007.- 117.- С. 71-84.
  13. Walther H.-O. Differential equations with locally bounded delay// J. Differ. Equ. - 2012. - 252. - С. 3001- 3039.
  14. Walther H. O. Semiflows for differential equations with locally bounded delay on solution manifolds in the space C1((-∞, 0], Rn)// Topol. Methods Nonlinear Anal. - 2016. - 48. - С. 507-537.
  15. Walther H. O. Local invariant manifolds for delay differential equations with state space in C1((-∞, 0], Rn)// Electron. J. Qual. Theory Differ. Equ. - 2016. - 85.- С. 1-29.
  16. Walther H. O. Maps which are continuously differentiable in the sense of Michal and Bastiani but not of Fre´chet// Contemp. Math. Fundam. Directions. - 2017. - 63. - С. 543-556.
  17. Walther H. O. Differentiability in Fre´chet spaces and delay differential equations// Electron. J. Qual. Theory Differ. Equ. - 2019. - 13. - С. 1-44.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies