On Holder’s Inequality in Lebesgue Spaces with Variable Order of Summability

Cover Page

Cite item

Abstract

In this paper, we introduce a new version of the definition of a quasi-norm (in particular, a norm) in Lebesgue spaces with variable order of summability. Using it, we prove an analogue of Holder’s inequality for such spaces, which is more general and more precise than those known earlier.

About the authors

V. I. Burenkov

Peoples’ Friendship University of Russia (RUDN University); Cardiff University

Author for correspondence.
Email: Burenkov@cardiff.ac.uk
Moscow, Russia; Cardiff, UK

T. V. Tararykova

Peoples’ Friendship University of Russia (RUDN University); Cardiff University

Email: tararykovat@cardiff.ac.uk
Moscow, Russia; Cardiff, UK

References

  1. Бандалиев Р. А. О структурных свойствах весового пространства Lp(x),ω для 0 < p(x) № 1// Мат. заметки.- 2014.- 95, № 4. - C. 492-506.
  2. Жиков В. В. Усреднение функционалов вариационного исчисления и теории упругости// Изв. АН СССР. Сер. Мат. - 1986. - 50, № 4. - C. 675-710.
  3. Рабинович В. С., Самко С. Г. Сингулярные интегральные операторы в весовых пространствах Лебега с переменными показателями на сложных карлесоновских кривых// Функц. анализ и его прилож. - 2012. - 46, № 1. - C. 87-92.
  4. Самко С. Г., Умархаджиев С. М. О регуляризации одного многомерного интегрального уравнения в пространствах Лебега с переменным показателем// Мат. заметки. - 2013. - 93, № 1. - C. 575-585.
  5. Шарапудинов И. И. О топологии пространства Lp(t)([0, 1])// Мат. заметки. - 1979. - 26,№ 4. - С. 613- 632.
  6. Bandaliev R. A. On Hardy-type inequalities in weighted variable exponent spaces Lp(x),ω for 0 < p(x) № 1// Eurasian Math. J. - 2013. - 4, № 4. - C. 5-16.
  7. Bandaliev R. A., Hasanov S. G. On denseness of C∞(Ω) and compactness in Lp(x)(Ω) for 0 < p(x) № 1// Moscow Math. J.- 2018.- 18, № 1. - C. 1-13.
  8. Bendaoud S. A., Senouci A. Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with 0 < p(x) № 1// Eurasian Math. J. - 2018. - 9, № 1. - C. 30-39.
  9. Cruz-Uribe D., Fiorenza A. Variable Lebesgue spaces. Foundations and harmonic analysis. - Basel: Birkha¨user, 2013.
  10. Cruz-Uribe D., Fiorenza A., Neugebauer C. The maximal function on variable Lp spaces// Ann. Acad. Sci. Fenn. Math. - 2003. - 28. - C. 223-238.
  11. Diening L. Maximal function on generalized Lebesgue spaces Lp(.)// Math. Inequal. Appl. - 2004. - 7, № 2. - C. 245-254.
  12. Diening L., Harjulehto P., Hasto P., Ruzhichka M. Lebesgue and Sobolev spaces with variable exponents. - Berlin: Springer, 2011.
  13. Kovachik O., Rakosnik J. On spaces Lp(x) and Wk,p(x) // Czechoslovak Math. J.- 1991.- 41, № 4. - C. 592-618.
  14. Nekvinda A. Hardy-Littlewood maximal operator on Lp(x)(Mn)// Math. Inequal. Appl. - 2004. - 1, № 2. - C. 255-266.
  15. Ruzhichka M. Electrorheological fluids: modeling and mathematical theory. - Berlin: Springer, 2000.
  16. Samko S. Convolution type operators in Lp(x)// Integral Transforms Spec. Funct. - 1998. - 7, № 1-2. - C. 123-144. Contemporary Mathematics. Fundamental Directions, 2021, Vol. 67, No. 3, 472-482 481
  17. Senouci A., Zanou A. Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with 0 < p(x) № 1// Eurasian Math. J. - 2020. - 11, № 4. - C. 58-65.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies