On Calculation of the Norm of a Monotone Operator in Ideal Spaces

Cover Page

Cite item

Abstract

This paper contains the proof of general results on the calculation of the norms of monotone operators acting from one ideal space to another under matching convexity and concavity properties of the operator and the norms in ideal spaces.

About the authors

E. G. Bakhtigareeva

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: bakhtigareeva-eg@rudn.ru
Moscow, Russia

M. L. Goldman

Peoples’ Friendship University of Russia (RUDN University)

Email: seulydia@yandex.ru
Moscow, Russia

References

  1. Канторович Л. В., Акилов Г. П. Функциональный анализ. - М.: Наука, 1984.
  2. Крейн С. Г., Петунин Ю. И., Семенов Е. М. Интерполяция линейных операторов. - М.: Наука, 1978.
  3. Трибель Х. Теория интерполяции. Функциональные пространства. Дифференциальные операторы. - М.: Мир, 1980.
  4. Bakhtigareeva E. G., Goldman M. L. Construction of an optimal envelope for a cone of nonnegative functions with monotonicity properties// Proc. Steklov Inst. Math. - 2016. - 293. - С. 37-55.
  5. Bakhtigareeva E. G., Goldman M. L. Calculation of the norms for monotone operators on the cones of functions with monotonicity properties// Lobachevskii J. Math. - 2021. - 42, № 5. - С. 857-874.
  6. Bennett C., Sharpley R. Interpolation of operators. - Boston: Acad. Press, 1988.
  7. Berg J., Lo¨fstro¨m J. Interpolation spaces. An Introduction. - Berlin: Springer, 1976.
  8. Burenkov V. I., Goldman M. L. Calculation of the norm of a positive operator on the cone of monotone functions// Proc. Steklov Inst. Math. - 1995. - 210.- С. 47-65.
  9. Gogatishvili A., Stepanov V. D. Reduction theorems for weighted integral inequalities on the cone of monotone functions// J. Math. Anal. Appl. - 2013. - 68, № 4. - С. 597-664.
  10. Gogatishvili A., Stepanov V. D. Reduction theorems for operators on the cone of monotone functions// Russ. Math. Surv. - 2013. - 405, № 1. - С. 156-172.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies