Abstract
This paper is devoted to the study of the qualitative properties of solutions to boundary-value problems for strongly elliptic differential-difference equations. Some results for these equations such as existence and smoothness of generalized solutions in certain subdomains of Q were obtained earlier. Nevertheless, the smoothness of generalized solutions of such problems can be violated near the boundary of these subdomains even for infinitely differentiable right-hand side. The subdomains are defined as connected components of the set that is obtained from the domain Q by throwing out all possible shifts of the boundary ∂Q by vectors of a certain group generated by shifts occurring in the difference operators. For the one dimensional Neumann problem for differential-difference equations there were obtained conditions on the coefficients of difference operators, under which for any continuous right-hand side there is a classical solution of the problem that coincides with the generalized solution. 2 Also there was obtained the smoothness (in Sobolev spaces W k ) of generalized solutions of the second and the third boundary-value problems for strongly elliptic differential-difference equations in subdomains excluding ε-neighborhoods of certain points. However, the smoothness (in Ho¨ lder spaces) of generalized solutions of the second boundary-value problem for strongly elliptic differential-difference equations on the boundary of adjacent subdomains was not considered. In this paper, we study this question in Ho¨ lder spaces. We establish necessary and sufficient conditions for the coefficients of difference operators that guarantee smoothness of the generalized solution on the boundary of adjacent subdomains for any right-hand side from the Ho¨ lder space.