Maps Which Are Continuously Differentiable in the Sense of Michal and Bastiani but not of Fre´chet
- Authors: Walther H.1
-
Affiliations:
- Mathematisches Institut, Universita¨t Gießen
- Issue: Vol 63, No 4 (2017): Differential and Functional Differential Equations
- Pages: 543-556
- Section: New Results
- URL: https://journals.rudn.ru/CMFD/article/view/22399
- DOI: https://doi.org/10.22363/2413-3639-2017-63-4-543-556
Cite item
Full Text
Abstract
We construct examples of nonlinear maps on function spaces which are continuously differentiable in the sense of Michal and Bastiani but not in the sense of Fre´chet. The search for such examples is motivated by studies of delay differential equations with the delay variable and not necessarily bounded.
About the authors
Hans-Otto Walther
Mathematisches Institut, Universita¨t Gießen
Author for correspondence.
Email: Hans-Otto.Walther@math.uni-giessen.de
Arndtstr. 2, D 35392 Gießen, Germany
References
- Bastiani A. Applications diffe´rentiables et variete´s de dimension infinie// J. Anal. Math. - 1964. - 13.- С. 1-114.
- Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H. O. Delay equations: functional-, complexand nonlinear analysis. - New York: Springer, 1995.
- Glo¨ckner H. Implicit functions from topological vector spaces to Banach spaces// Israel J. Math. - 2006. - 155. - С. 205-252.
- Glo¨ckner H. Finite order differentiability properties, fixed points and implicit functions over valued fields// http://arxiv.org/pdf/math/0511218. - 2007.
- Hale J. K. Functional differential equations. - New York: Springer, 1971.
- Hale J. K., Verduyn Lunel S. M. Introduction to functional differential equations. - New York: Springer, 1993.
- Hamilton R. S. The inverse function theorem of Nash and Moser// Bull. Am. Math. Soc. (N. S.). - 1982. - 7. - С. 65-222.
- Hartung F., Krisztin T., Walther H. O., Wu J. Functional differential equations with state-dependent delays: theory and applications// Handb. Differ. Equ. - 2006. - 3. - С. 435-545.
- Krisztin T., Walther H. O. Smoothness issues in differential equations with state-dependent delay// Rend. Istit. Mat. Univ. Trieste. - 2017. - 49. - С. 95-112.
- Michal A. D. Differential calculus in linear topological spaces// Proc. Natl. Acad. Sci. USA. - 1938. - 24. - С. 340-342.
- Szilasi J., Lovas R. L. Some aspects of differential theories// В сб.: Handbook of global analysis. - Amsterdam: Elsevier, 2007. - С. 1071-1116.
- Walther H. O. The solution manifold and C1-smoothness of solution operators for differential equations with state dependent delay// J. Differ. Equ. - 2003. - 195. - С. 46-65.
- Walther H. O. Smoothness properties of semiflows for differential equations with state dependent delay// J. Math. Sci. (N. Y.). - 2004. - 124. - С. 5193-5207.
- Walther H. O. Differential equations with locally bounded delay// J. Differ. Equ. - 2012. - 252. - С. 3001- 3039.
- Walther H. O. Evolution systems for differential equations with variable time lags// J. Math. Sci. (N. Y.). - 2014. - 202. - С. 911-933.
- Walther H. O. Semiflows for differential equations with locally bounded delay on solution manifolds in the space C1((-∞, 0], Rn)// Topol. Methods Nonlinear Anal. - 2016. - 48. - С. 507-537.
- Walther H. O. Local invariant manifolds for delay differential equations with state space in C1((-∞, 0], Rn)// Electron. J. Qual. Theory Differ. Equ. - 2016. - 85. - С. 1-29.
- Walther H. O. Fre´chet differentiability in Fre´chet spaces, and differential equations with unbounded variable delay// Preprint, 2016.