Аннотация
Рассмотрена модель плоской статически определимой фермы решетчатого типа без нижнего пояса с двойной решеткой. Известные аналоги такой конструкции - ферма Финка и ферма Больмана. Двумя методами выводится аналитическая зависимость нижней границы основной собственной частоты регулярной конструкции от числа панелей. Предполагается, что его масса фермы сконцентрирована в ее узлах. Узлы совершают колебательные движения по вертикали, число степеней свободы совпадает с числом узлов. Расчет жесткости фермы производится с помощью интеграла Максвелла - Мора. Усилия в упругих стержнях и реакции подвижной и неподвижной опор вычисляются методом вырезания узлов в зависимости от размеров фермы и ее порядка регулярности. Система линейных уравнений решается с помощью метода обратной матрицы. Для расчета нижней границы основной частоты используется метод парциальных частот Донкерлея. Для серии решений, полученных для ферм с различным числом панелей, методом индукции в системе символьной математики Maple находится общий член последовательности расчетных формул. Коэффициенты формулы имеют вид полиномов по числу панелей порядка не выше пятого. Решение сравнивается с приближенным вариантом метода Донкерлея, в котором сумма слагаемых, соответствующих парциальных частотам, вычисляется по теореме о среднем. На конкретных примерах показана близость частоты, полученной двумя аналитическими методами, численному решению задачи о спектре частот. Приближенный вариант метода Донкерлея имеет более простую форму и точность, сопоставимую с исходным методом Донкерлея.