Влияние грунтового основания на напряженно-деформированное состояние большепролетного здания с цилиндро-плитным покрытием
- Авторы: Кужахметова Э.Р.1, Сутырин В.И.2
-
Учреждения:
- Национальный исследовательский Московский государственный строительный университет
- Балтийский федеральный университет имени Иммануила Канта
- Выпуск: Том 18, № 5 (2022)
- Страницы: 444-457
- Раздел: Аналитические и численные методы расчета конструкций
- URL: https://journals.rudn.ru/structural-mechanics/article/view/33411
- DOI: https://doi.org/10.22363/1815-5235-2022-18-5-444-457
Цитировать
Полный текст
Аннотация
Рассмотрены конечно-элементные модели большепролетного здания с цилиндро-плитным покрытием как большой пространственной механической системы с разными граничными условиями. Первая модель представляет конструкцию надземной части здания с жесткой заделкой на уровне основания. У второй модели конструкция надземной части опирается на подземную часть, включающую свайный фундамент и грунтовое основание с разными физико-механическими свойствами. Цель исследования - сравнительно-численный анализ НДС большепролетного здания с разными граничными условиями. В ходе численного исследования выявлено влияние конструктивных особенностей подземной части здания, а также физико-механических свойств грунта на напряженно-деформированное состояние большепролетного покрытия и здания в целом. Численный статический анализ пространственных конечно-элементных моделей большепролетного здания проводился в программном комплексе САЕ класса Femap NX Nastran. Результаты статического анализа продемонстрировали существенное структурное влияние подземной части большепролетного здания на характеристики его НДС. В следующей статье предполагается провести модальный анализ для указанных моделей здания.
Ключевые слова
Полный текст
Введение Большепролетные здания сложны и разнообразны[15] [1-14]. Учитывая значительные размеры в плане, их относят к гибким системам. Согласно требованиям действующих нормативных документов[16] расчет здания необходимо выполнять с учетом фундамента и грунтового массива, что приводит к существенному усложнению расчетной модели. На практике трудоемкость ее построения и анализа становится весьма значительной, особенно в случае использования пространственных конечно-элементных сеток, которые обеспечивают наиболее полную информацию о напряженно-деформированном состоянии (НДС) проектируемого здания с учетом совместной работы фундамента и грунтового основания. Порядок подобных моделей определяется не только большим числом конечных элементов (КЭ) пространственной модели здания и фундамента, но и в значительной мере исключительно большим числом сопряженных КЭ грунтового массива [15]. Расчет пространственной модели «здание - фундамент - основание» осложняется необходимостью учета физико-механических характеристик грунта на разных глубинах заложения в соответствии с геологическим отчетом на площадке строительства[17]. Если при этом дополнительно учитываются упругопластические свойства грунта, то подобный расчет необходимо выполнять итерационным методом, значительно осложняющим вариантные исследования расчетной модели всего здания [15]. В отечественных и зарубежных исследованиях рассматриваются модели высотных зданий каркасного типа, основными материалами которых являются железобетон и сталь [16-24]. Следует отметить также статьи, посвященные сохранению объектов культурного наследия - исторических строительных объектов с разнообразными архитектурными формами, конструктивными решениями и строительными материалами [24-36]. В данных статьях авторы приводят результаты мониторинга, а также численные расчеты указанных объектов на различные внешние воздействия с учетом влияния фундаментов и грунтового основания. Особый интерес проявлен к исследованию железобетонных и каменных минаретов и колоколен [24-36]. Подобные комплексные исследования для большепролетных зданий отсутствуют. В предлагаемой статье приведены результаты численного (статического) анализа различных расчетных моделей на примере большепролетного здания с цилиндро-плитным (ЦП) покрытием. Результаты численного (модального) анализа указанных расчетных моделей будут представлены в следующей статье. Цель исследования состояла в обосновании необходимости учета подземной части при определении НДС надземной части большепролетного здания с ЦП покрытием. Задачами исследований являются: - создание пространственных конечно-элементных моделей большепролетного здания с разными граничными условиями; - исследование влияния граничных условий на напряженно-деформированное состояние надземной части большепролетного здания; - сравнительный анализ НДС моделей с разными физико-механическими свойствами грунтового основания. Общая характеристика большепролетного здания с цилиндро-плитным (ЦП) покрытием Надземная часть здания (рис. 1, а). Центральная часть здания представляет собой прямоугольник в плане с размерами 40(B) × 84(L) м, по контуру которого расположены колонны (поз. 1) квадратного сечения с шагом 6 м, высота которых в продольном направлении (по длине здания) принята 12 м, а в поперечном направлении (по ширине) - 16 м. Пространственным покрытием центральной части служит монолитная железобетонная цилиндрическая оболочка нулевой гауссовой кривизны (поз. 2), высотой h = 4 м, толщиной δ = 0,15 м и радиусом кривизны R = 52 м. Бортовыми элементами цилиндрической оболочки являются две торцевые железобетонные арки и продольные балки прямоугольного сечения с размерами b = 0,5 м, h = 0,8 м. По бокам с двух сторон центральной части здания расположены двухэтажные помещения с плитами плоского покрытия. Высота каждого этажа равна 6 м. Толщины железобетонных плит покрытий и перекрытий (поз. 3) приняты t = 0,2 м. Плиты опираются на колонны (поз. 1), установленные с шагом и высотой H = 6 м. В продольном и поперечном направлениях в центре и по торцам здания расположены диафрагмы жесткости в виде монолитных железобетонных стен (поз. 4). Их толщина равна 0,5 м, длина 6 и 12 м. В крайних блоках расположены лифтовые шахты с монолитными железобетонными стенами толщиной 0,5 м, а также лестничные клетки. Толщина монолитных железобетонных лестничных площадок составляет t = 0,2 м, а толщина лестничных маршей - t = 0,22 м [37; 38]. Подземная часть здания (рис. 1, б) представляет собой грунтовый массив (поз. 5), повторяющий параметры и форму большепролетного здания. Под каждой колонной (поз. 1) устроены отдельно стоящие монолитные железобетонные свайные фундаменты в форме конуса с боковыми и нижними щебневыми образованиями (поз. 6), оригинальность и новизна, которых подтверждена патентной экспертизой[18]. Под железобетонными блоками (поз. 4), состоящими из диафрагм (стен), лифтовых шахт и лестничных клеток расположены кусты из указанных свай. В [39-43] содержится описание технологии изготовления свайной конструкции. Там же представлены прочностные и деформационные характеристики свайной конструкции с учетом разных физико-механических свойств грунта. Приводится сравнение напряженно-деформированного состояния указанной сваи с другими видами и формами свай и методы их расчета[19]. В ходе расчетного исследования приняты следующие геометрические параметры сваи: общий верхний диаметр свайной конструкции 1,2 м, нижний ее диаметр 0,6 м. Нижнее щебневое расширение выполнено в форме шара диаметром D размером около 2 м. Длина ствола сваи L = 10 м. Высота массива грунта принята H = 16 м. рис 2_с надписями.png рис 2_с надписями.png а б Рис. 1. Конечно-элементные модели большепролетного здания с цилиндро-плитным (ЦП) покрытием: а - модель 1 «Здание - жесткая заделка»; б - модель 2 «Здание - свайный фундамент - грунтовое основание»; надземная часть: 1 - колонны, 2 - цилиндрическая оболочка нулевой гауссовой кривизны, 3 - продольные и поперечные диафрагмы, 4 - плиты плоского покрытия и перекрытия; подземная часть: 5 - грунтовое основание, 6 - свайный фундамент (условно не показаны) Figure 1. Finite element models of a large-span building with a cylinder-and-slab roof: a - model 1 “Superstructure - fixed-end”; b - model 2 “Superstructure - pile foundation - soil base”; superstructure: 1 - columns, 2 - cylindrical shell of zero Gaussian curvature, 3 - longitudinal and transverse diaphragms, 4 - flat slabs and floor slabs; substructure: 5 - soil base; 6 - pile foundation (conditionally not shown) Материалы исследования Надземная часть. Цилиндро-плитное покрытие и каркас здания выполнены из тяжелого бетона класса В25. Расчетные характеристики бетона приняты в соответствии с СП 63.13330.2011[20]. Плотность тяжелого бетона ρ = 2500 кг/м3 (п. 6.1.1). Начальный модуль упругости тяжелого бетона В25 при сжатии и растяжении Eb = 30×103 МПа принят по таблице 6.11, модуль сдвига бетона Gb = 0,4Eb = 0,4×30×103 = 12×103 МПа (п. 6.1.15). Коэффициент Пуассона (коэффициент поперечной деформации) бетона допускается принимать ν = 0,2 (п. 6.1.17). Коэффициент линейной температурной деформации тяжелого бетона при изменении температуры от -40º до +50º принимают αbt = 1·10-5 ºС-1 (п. 6.1.18). Нормативное и расчетное сопротивление тяжелого бетона на осевое сжатие класса В25 для предельного состояния второй группы Rb,n = Rb,ser = 18,5 МПа (табл. 6.7). Расчетное сопротивление тяжелого бетона на осевое сжатие класса В25 для предельного состояния первой группы Rb = 14,5 МПа (табл. 6.8). Подземная часть. Материалом для монолитной железобетонной сваи конической формы принят тяжелый бетон класса В15. Все характеристики бетона приняты по СП 63.13330.2011. Расчетное сопротивление бетона для предельных состояний первой группы при классе бетона В15 по прочности на сжатие Rb = 8,5 МПа (табл. 6.8); расчетное сопротивление бетона для предельных состояний второй группы при классе бетона В15 по прочности на сжатие Rb,ser =11 МПа (табл. 6.7). Модуль упругости бетона принят равным Eb = 24×103 МПа (табл. 6.11). Значение модуля сдвига бетона принято равным Gb = 0,4Eb = 0,4×24×103 = 9,6×103 МПа (п. 6.1.15) и коэффициент Пуассона ν = 0,2 (п. 6.1.17). Под нижним концом сваи расположен щебневый шар диаметром D = 2 м. Щебень группы А по ГОСТ 8267-93[21] с модулем упругости Е = 350 МПа (табл. 3.2)[22] и коэффициентом Пуассона ν = 0,3. Для иллюстрации численного анализа выбраны два типа однородных грунта. Их расчетные характеристики приняты по СП 22.13330.2011[23]: · вариант 1 - грунт однородного основания - песок четвертичного отложения, средней плотности (коэффициент пористости е = 0,45) с модулем деформации Е1 = 50 МПа, углом внутреннего трения φ1 = 40°, удельным сцеплением с1 = 3 кПа (табл. Б.1) и коэффициентом Пуассона ν = 0,35 (табл. 5.10); · вариант 2 - грунт однородного основания - песок четвертичного отложения, пылеватый (коэффициент пористости е = 0,45) с модулем деформации Е2 = 11 МПа, углом внутреннего трения φ = 26°, удельным сцеплением с = 2 кПа (табл. Б.1) и коэффициентом Пуассона ν = 0,35 (табл. 5.10). Внешние вертикальные (постоянные и временные, включая снеговые) нагрузки на цилиндро-плитное покрытие большепролетного здания приняты из [37; 38] и определены в соответствии с СП 17.13330.2017 и СП 20.13330.2016[24]. Методы исследования Численное исследование пространственной модели большепролетного здания (сооружения) с цилиндро-плитным покрытием, как большой механической системы выполнено в ПК Femap NX Nastran, реализующем метод конечных элементов. На геометрию здания наложены сетки конечных элементов рекомендованной длины, формы и конфигурации [44-47]. Надземная часть. Основными конечными элементами для надземной части большепролетного здания служили элементы типа Plate, Beam и Bar [44-47]. При расчете большепролетного здания работу строительных материалов (бетона, железобетона) можно задать как в упругой стадии, так и в упруго-пластичной стадии. Диаграммы состояния бетона используют при расчете железобетонных элементов по нелинейной деформационной модели, изложенной в СП 63.13330.2012 и научно-технических источниках [48]. В качестве рабочих диаграмм состояния тяжелого вида бетона используют двухлинейную и трехлинейную диаграммы Прандля. Подземная часть. Основными конечными элементами для свайного фундамента и грунтового основания приняты Volume Elements типа Solid [44-47; 49]. По законам теоретической и строительной механики модель грунта представляет собой сплошное, твердое, изотропное, линейно-деформированное тело, подчиняющееся обобщенному закону Гука[25] [49]. В таком случае расчет осадки фундамента определяется методом послойного суммирования по СП 22.13330.2011. Однако существуют упруго-пластичная и пластичная модели грунта, где критерий пластичности Кулона - Мора используется для анализа несущей способности грунта. Посколько грунт воспринимает только сжимающие и сдвигающие напряжения, то в данных моделях определяющей прочностной характеристикой грунтового основания является сдвиг (касательные напряжения). Расчет большепролетного здания с упруго-пластичными и пластичными моделями планируется представить в последующих статьях. Результаты В ходе исследовании анализировались пространственные конечно-элементные модели большепролетного здания с разными граничными условиями: модель 1 «Здание - жесткая заделка» и модель 2 «Здание - свайный фундамент - грунтовое основание». В модели 2 рассмотрено грунтовое основание двух вариантов: 1 - с модулем деформации Е1 = 50 МПа (модель 2, а); 2 - с модулем деформации Е2 = 11 МПа (модель 2, б). Модель 1 включает 30 348 конечных элементов и 30 469 узлов их соединения (общий порядок разрешающей системы уравнений 30 467); модель 2 - 1 421 208 элементов и 1 989 717 узлов (общий порядок системы уравнений 5 600 292). В табл. 1 приведены результаты напряженного состояния большепролетного здания с разными граничными условиями. Эквивалентные напряжения σэкв, Н/м2, в элементах вычисляются в соответствии с гипотезой энергии формоизменения фон Мизеса (Von Mises stress): (1) где σx, σy, σz - нормальные напряжения в точке на площадках, перпендикулярных к координатным осям X, Y, Z; τxy, τyz, τxz - касательные напряжения в точке на площадках, перпендикулярных к координатным осям X, Y, Z. Для плоского напряженного состояния оболочки, где σz = 0, τyz = 0, τzx = 0 выражение имеет вид (2) Таблица 1 / Table 1 Результаты напряженного состояния моделей / The results of the stress state of the models Элементы / Elements Максимальные эквивалентные напряжения σэкв, Н/м2, для моделей / Maximum Von Mises stress σ, N/m2, for the models Модель 1 / Model 1 Модель 2, а (Е1 = 50 МПа) / Model 2, a (E1 = 50 MPa) Модель 2, б (Е2 = 11 МПа) / Model 2, b (E2 = 11 MPa) σэкв в верхних волокнах пластины / Plate top Von Mises stress Эквивалентные напряжения верхние пластины_НГ-1.png верх_напр.png верх_оболочка_11 МПа.png σэкв в нижних волокнах пластины / Plate bot Von Mises stress Эквивалентные напряжения нижние пластины_НГ-1.png верх_напряжение.png низ оболочки_11МПа.png σэкв в объемных элементах / Solid Von Mises stress - свая.png свая_11 МПа.png В табл. 2 приведены результаты расчета деформированного состояния большепролетного здания с разными граничными условиями. По результатам статического расчета максимальные (полные) перемещения для модели 1 с жесткой заделкой составили Δ1 = 0,0105 м. Для моделей 2 с учетом свайного фундамента и грунтового основания получены следующие максимальные перемещения: для модели 2, а с максимальным модулем деформации песка четвертичного отложения Е1 = 50 МПа - Δ2 = 0,0267 м, а для модели 2, б с минимальным модулем деформации песка четвертичного отложения Е1 = 11 МПа - Δ3 = 0,0319 м. На данный результат влияют расчетные усилия, возникающие в вертикальных элементах с учетом их закрепления. Для модели 1 «Здание - жесткая заделка» максимальные изгибающие моменты железобетонных колонн в плоскости ХУ составили Мmax = 57 590 Нм и Мmin = -44 669 Нм (рис. 2, а). Максимальные изгибающие моменты в плоскости XZ колонны составили Мmax = 16 762 Нм и Мmin = -16 743 Нм (рис. 2, б). Крутящие моменты - Мmax = 806,7 Нм и Мmin = -806 Нм (рис. 2, в). На рис. 3 приведены продольные силы стержневых элементов (колонн) Nmax = 5438 Н и Nmin = -309 377 Н. Максимальные перерезывающие (поперечные) силы в плоскости XY Qmax = 9154 Н и Qmin = -9407 Н и в плоскости XZ Qmax = 2317 Н и Qmin = -2322 Н. Таблица 2 / Table 2 Результаты деформированного состояния моделей / Results of the strain state of the models Полные перемещения Δi, м, моделей / Total translation Δi, m, of the models Модель 1 / Model 1 Модель 2, а (Е1 = 50 МПа) / Model 2, a (E1 = 50 MPa) Модель 2, б (Е2 = 11 МПа) / Model 2, b (E2 = 11 MPa) Δ1 = 0,0105 м Δ2 = 0,0267 м Δ3 = 0,0319 м Полные перемещения_НГ-1_крупно.png Полные перемещения_Е=50МПа.png Полные перемещения_Е=11МПа.png - Свая_полные перещения_Е=50МПа.png Свая_полные перемещения_Е=11МПа.png Колонны_момент 1_НГ-1.png Колонны_момент 2_НГ-1.png Крутящий момент_колонна_НГ-1.png а б в Рис. 2. Деформированная модель 1 «Здание - жесткая заделка»: а - изгибающий момент стержневого элемента (колонны)[26] в плоскости ХУ, Нм; б - изгибающий момент стержневого элемента (колонны) в плоскости XZ, Нм; в - крутящий момент в стержневом элементе (колонне), Нм Figure 2. Model 1 “Superstructure - fixed-end”: а - Bar EndA Plane1 moment/Bar EndB Plane1 moment[27], Nm; б - Bar EndA Plane2 moment/Bar EndB Plane2 moment, Nm; в - Bar EndA torque/Bar EndB torque, Nm Для модели 2, а «Здание - свайный фундамент - грунтовое основание» (Е1 = 50 МПа) максимальные изгибающие моменты в плоскости ХУ колонны составили Мmax = 142 812 Нм и Мmin = -142 280 Нм. Максимальные изгибающие моменты в плоскости XZ колонн составили Мmax = 22 081 Нм и Мmin = -22 215 Нм. Крутящие моменты: Мmax = 6,067 Нм и Мmin = -5,979 Нм (рис. 4). Максимальные значения продольной силы стержневых элементов (колонн) Nmax = 37 969 Н и Nmin = -522 205 Н и перерезывающих (поперечных) сил в плоскостях XY- Qmax = 24 106 Н и Qmin = -24 251 Н и XZ - Qmax = 4605 Н и Qmin = -3244 Н изображены на рис. 5. сила в колоннах.png поперечная сила 1.png поперечная сила 2.png а б в Рис. 3. Деформированная модель 1 «Здание - жесткая заделка»: а - продольная сила в стержневом элементе (колонны), Н; б - перерезывающая (поперечная) сила в плоскости XY стержневого элемента (колонны), Н; в - перерезывающая (поперечная) сила в плоскости XZ стержневого элемента (колонны), Н Figure 3. Model 1 “Superstructure - fixed-end”: а - Bar EndA axial force/Bar EndB axial force, N; б - Bar EndA Pl1 shear force/Bar EndB Pl1 shear force, N; в - Bar EndA Pl2 shear force/Bar EndB Pl2 shear force, N Колонны_момент1_Е=50МПа.png Колонны_момент2_Е=50МПа.png Колонны_кручение_Е=50МПа.png а б в Рис. 4. Деформированная модель 2, а «Здание - свайный фундамент - грунтовое основание Е1 = 50 МПа»: а - изгибающий момент стержневого элемента (колонны) в плоскости ХУ, Нм; б - изгибающий момент стержневого элемента (колонны) в плоскости XZ, Нм; в - крутящий момент в стержневом элементе (колонне), Нм Figure 4. Model 2, a “Superstructure - pile foundation - soil base Е1 = 50 MPа”: а - Bar EndA Plane1 moment/Bar EndB Plane1 moment, Nm; б - Bar EndA Plane2 moment/Bar EndB Plane2 moment, Nm; в - Bar EndA torque/Bar EndB torque, Nm Сила_колонны_Е=50МПа.png Колонны_сдвиг 1_Е=50МПа.png Колонны_сдвиг 2_Е=50МПа.png а б в Рис. 5. Деформированная модель 2, а «Здание - свайный фундамент - грунтовое основание Е1 = 50 МПа»: а - продольная сила в стержневом элементе (колонны), Н; б - перерезывающая (поперечная) сила в плоскости XY стержневого элемента (колонны), Н; в - перерезывающая (поперечная) сила в плоскости XZ стержневого элемента (колонны), Н Figure 5. Model 2, a “Superstructure - pile foundation - soil base Е1 = 50 MPа”: а - Bar EndA axial force/Bar EndB axial force, N; б - Bar EndA Pl1 shear force/Bar EndB Pl1 shear force, N; в - Bar EndA Pl2 shear force/Bar EndB Pl2 shear force, N Для модели 2, б «Здание - свайный фундамент - грунтовое основание» (Е1 = 11 МПа) максимальные изгибающие моменты в плоскости ХУ колонны равны Мmax = 156 413 Нм и Мmin = 155 720 Нм. Максимальные изгибающие моменты в плоскости XZ колонн составили Мmax = 34 696 Нм и Мmin = -34 829 Нм. Крутящие моменты: Мmax = 6,366Нм и Мmin = -6,3 Нм (рис. 6). Колонны_Момент1_Е=11МПа.png Колонны_Момент2_Е=11МПа.png Колонна_кручение_Е=11МПа.png а б в Рис. 6. Деформированная модель 2, б «Здание - свайный фундамент - грунтовое основание Е2 = 11 МПа»: а - изгибающий момент стержневого элемента (колонны) в плоскости ХУ, Нм; б - изгибающий момент стержневого элемента (колонны) в плоскости XZ, Нм; в - крутящий момент в стержневом элементе (колонне), Нм Figure 6. Model 2, b “Superstructure - pile foundation - soil base Е2 = 11 МПа”: а - Bar EndA Plane1 moment/Bar EndB Plane1 moment, Nm; б - Bar EndA Plane2 moment/Bar EndB Plane2 moment, Nm; в - Bar EndA torque/Bar EndB torque, Nm Колонны_Сила_Е=11МПа.png поперечная сила 1.png поперечная сила 2.png а б в Рис. 7. Деформированная модель 2, б «Здание - свайный фундамент - грунтовое основание Е2 = 11 МПа»: а - продольная сила в стержневом элементе (колонны), Н; б - перерезывающая (поперечная) сила в плоскости XY стержневого элемента (колонны), Н; в - перерезывающая (поперечная) сила в плоскости XZ стержневого элемента (колонны), Н Figure 7. Model 2, b “Superstructure - pile foundation - soil base Е2 = 11 МПа”: а - Bar EndA axial force/Bar EndB axial force, N; б - Bar EndA Pl1 shear force/Bar EndB Pl1 shear force, N; в - Bar EndA Pl2 shear force/Bar EndB Pl2 shear force, N На рис. 7 приведены продольная сила Nmax = 20 231 Н и Nmin = -555 720 Н и перерезывающие (поперечные) силы в плоскости XY - Qmax = 25 668 Н и Qmin = -25 869 Н и в плоскости XZ - Qmax = 5794 Н и Qmin = -5169 Н стержневых элементов (колонн). Обсуждение В последние годы при проектировании зданий и сооружений все чаще используются большепролетные конструкции различных типов. В качестве примера можно привести здания с большепролетным цилиндро-плитным и цилиндро-плитно-вантовым покрытием[28] [37; 38]. Разнообразные конструктивные решения зданий указанных типов требуют глубокого инженерного анализа. Большое внимание уделяется их НДС под действием эксплуатационных статических нагрузок, а также поведению под действием сил, меняющихся во времени. Речь, в частности, идет о расчетном проектировании объектов, предназначенных для строительства в сейсмических районах. В проектных расчетах необходимо учесть работу подземной части здания, состоящей из фундамента (мелкого или глубокого заложения), взаимодействующего с грунтовыми массивами различной реологии. Особую сложность представляет экспериментальная оценка диссипативных (демпфирующих) свойств грунта, имеющего многослойную структуру[29] [50-52]. Исследования, выполняемые авторами, направлены на решение указанных инженерных задач. Опыт показывает, что эффективным инструментом комплексного инженерного анализа могут служить пространственные конечно-элементные модели зданий в системе с основанием и фундаментом. Заключение Расчеты показали, что упрощенное представление граничных условий опорных колонн большепролетного здания в виде жесткой заделки на уровне основания может привести к серьезным вычислительным ошибкам. Конструктивные особенности фундамента, а также физико-механические характеристики конструкционных материалов и грунтов оказывают существенное влияние на напряженно-деформированное состояние (НДС) надземной части большепролетного здания с цилиндро-плитным покрытием. В частности, расчетом выявляется существенное влияние перераспределения изгибающих моментов в опорной части каркаса (колонн) на общий прогиб и напряженное состояние цилиндрической оболочки покрытия конструкции здания в системе с основанием и свайным фундаментом. Существенным фактором является также распределение физико-механическими свойств реологических слоев грунта в соответствии с геологическими изысканиями. В ходе численного исследования было выявлено, что уменьшение модуля деформаций грунта Еi, МПа, приводит к увеличению характеристик НДС надземной части большепролетного здания с цилиндро-плитным покрытием. Таким образом, на прочность здания существенно влияют не только жесткостные свойства фундамента, но и физико-механические свойства грунтового основания. Степень указанного влияния указывает на недопустимость априорных упрощений граничных условий.Об авторах
Эльвира Рафаэльевна Кужахметова
Национальный исследовательский Московский государственный строительный университет
Автор, ответственный за переписку.
Email: elja_09@bk.ru
ORCID iD: 0000-0002-0907-786X
инженер, старший преподаватель, кафедра железобетонных и каменных конструкции, Институт промышленного и гражданского строительства
Российская Федерация, 129337, Москва, Ярославское шоссе, д. 26Валерий Игоревич Сутырин
Балтийский федеральный университет имени Иммануила Канта
Email: vsutyrin@mail.ru
ORCID iD: 0000-0002-4911-8515
доктор технических наук, профессор образовательно-научного кластера «Институт высоких технологий»
Российская Федерация, 236041, Калининград, ул. Александра Невского, д. 14Список литературы
- Кужахметова Э.Р., Сапожников А.И. Архитектурная выразительность и физиологическая целесообразность зданий с криволинейными поверхностями // Строительные материалы, оборудование, технологии XXI века. 2012. № 11 (166). С. 42-45.
- Сапожников А.И. Жизнь зданий в земной стихии. LAP LAMBER Academic Publishing, 2014. 60 c.
- Виноградов Г.Г. Расчет строительных пространственных конструкций. Л.: Стройиздат, 1990. 262 с.
- Гохарь-Хармандарян И.Г. Большепролетные купольные здания. М.: Стройиздат, 1978.150 с.
- Липницкий М.Е. Купола. Расчет и проектирование. Л.: Стройиздат, 1973. 129 с.
- Зимин С.С., Кокоткова О.Д., Беспалов В.В. Сводчатые конструкции исторических зданий // Строительство уникальных зданий и сооружений. 2015. № 2 (29). С. 57-72.
- Мамиева И.А. Аналитические поверхности для параметрической архитектуры в современных зданиях и сооружениях // Academia. Архитектура и строительство. 2020. № 1. С. 150-165.
- Мамиева И.А. Аналитические поверхности в архитектуре Москвы // Строительная механика инженерных конструкций и сооружений. 2013. № 4. С. 9-15.
- Кривошапко С.Н., Мамиева И.А. Зонтичные поверхности и поверхности зонтичного типа в архитектуре // Промышленное и гражданское строительство. 2011. № 7-1. С. 27-30.
- Кривошапко С.Н., Алборова Л.А., Мамиева И.А. Оболочечные структуры: генезис, материалы и подвиды. Ч. 1. Подвиды и направления // Academia. Архитектура и строительство. 2021. № 3. С. 125-134. http://doi.org/10.22337/2077-9038-2021-3-125-134
- Кривошапко С.Н., Алборова Л.А., Мамиева И.А. Оболочечные структуры: генезис, материалы и подвиды. Ч. 2. Конструкционные строительные материалы // Academia. Архитектура и строительство. 2021. № 4. С. 110-119. http://doi.org/10.22337/2077-9038-2021-4-110-119
- Кужахметова Э.Р. Особенности напряженно-деформированного состояния здания с цилиндро-плито-вантовым покрытием // Актуальные вопросы современной науки: сборник статей по материалам XII Международной научно-практической конференции, Томск, 23 мая 2018 года: в 3 ч. Ч. 1. Томск: Дендра, 2018. С. 93-98.
- Park K., Park M., Shin S. Design of large space cable roofs with retractable systems to open and close // International Journal of Latest Trends in Engineering and Technology. 2017. Vol. 8. Issue 4-1. Pp. 197-203. http://doi.org/10.21172/1.841.34
- Grunwalda G., Hermekingb T., Prangc T. Kinetic roof structure: Msheireb Heart of Doha // Procedia Engineering. 2016. Vol. 155. Pp. 89-296.
- Кужахметова Э.Р. Расчетное проектирование каркасного здания с учетом обобщенных жесткостей и нагрузок основания и фундамента (часть 1) // Вестник БГТУ имени В.Г. Шухова. 2019. № 12. С. 34-46. http://doi.org/10.34031/2071-7318-2019-4-12-34-46
- Popova A., Strakhov D., Sinyakov L. Numerical analysis of ground-structure interaction for framed building with isolated footings // Lecture Notes in Civil Engineering. 2021. Vol. 150. Pp. 304-315 https://doi.org/10.1007/978-3-030-72404-7_30
- Chandiwala A., Savaliya M., Vasanwala S. Soil-structure interaction on pile raft foundation in multi-story RC building with vertical irregularity // Lecture Notes in Civil Engineering. 2021. Vol. 138. Pp. 437-445.
- Mirsayapov I., Shakirov I., Nurieva D. Numerical studies of soil base deformations from reconstructed multi-storey building to nearby buildings // E3S Web of Conferences. 2021. Vol. 274. Article 03020.
- Wang H., Zhang R. Dynamic structure-soil-structure interaction of piled high-rise buildings under earthquake excitations I: influence on dynamic response // Latin American Journal of Solids and Structures. 2021. Vol. 18. Issue 3. e357. https://doi.org/10.1590/1679-78256223
- Wu M. Analysis of the influence of pile foundation settlement of high-rise buildings on surrounding buildings // Arabian Journal of Geosciences. 2020. Vol. 13. Article 822. https://doi.org/10.1007/s12517-020-05832-7
- Bhattacharjee T., Chanda D., Saha R. Influence of soil flexibility and plan asymmetry on seismic behaviour of soil-piled raft-structure system // Structures. 2021. Vol. 33. Pp. 1775-1788. https://doi.org/10.1016/j.istruc.2021.05.045
- Baimakhan R.B., Kadirova Z.B., Seinassinova A.A, Baimakhan A.R., Baimakhanova G.M. Calculation model of the “building-foundation” system on anisotropic base and deformation calculations // Periodicals of Engineering and Natural Sciences. 2021. Vol. 9. Issue 1. Pp. 308-321. http://doi.org/10.21533/pen.v9i1.1807
- Mirsayapov I., Koroleva I. Long-term settlements assessment of high-rise building groundbase based on analytical ground deformation diagram // Procedia Engineering. 2016. Vol. 165. Pp. 519-527. https://doi.org/10.1016/j.proeng.2016.11.728
- Khoshnoudian F., Ziaei R., Ayyobi P. Effects of nonlinear soil-structure interaction on the seismic response of structure-TMD systems subjected to near-field earthquakes // Bulletin of Earthquake Engineering. 2017. Vol.15. Pp. 199-226. https://doi.org/10.1007/s10518-016-9963-y
- Gentile C., Guidobaldi M., Saisi A. One-year dynamic monitoring of a historic tower: damage detection under changing environment // Meccanica. 2016. Vol. 51. Pp. 2873-2889. https://doi.org/10.1007/s11012-016-0482-3
- Ubertini F., Cavalagli N., Kita A. Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM // Bulletin of Earthquake Engineering. 2018. Vol. 16. Pp. 775-801. https://doi.org/10.1007/s10518-017-0222-7
- Azzara R.M., Girardi M., Padovani C., Pellegrini D. Experimental and numerical investigations on the seismic behaviour of the San Frediano bell tower in Lucca // Annals of Geophysics. 2019. Vol. 62. No. 3. SE342. https://doi.org/10.4401/ag-8025
- Cuadra C., Karkee M.B., Tokeshi K. Earthquake risk to Inca’s historical constructions in Machupicchu // Advances in Engineering Software. 2008. Vol. 39. Issue 4. Pp. 336-345. https://doi.org/10.1016/j.advengsoft.2007.01.002
- Karapetroa S., Manakou M., Bindi D., Petrovic B., Pitilakis K. “Time-building specific” seismic vulnerability assessment of a hospital RC building using field monitoring data // Engineering Structures. 2016. Vol. 112. Issue 1. Pp. 114-132. https://doi.org/10.1016/j.engstruct.2016.01.009
- Karatzetzou A., Pitilakis D. Reduction factors to evaluate acceleration demand of soil-foundation-structure systems // Soil Dynamics and Earthquake Engineering. 2018. Vol. 109. Pp. 199-208. https://doi.org/10.1016/j.soildyn.2018.03.017
- Karafagka S., Fotopoulou S., Pitilakis D. Fragility assessment of non-ductile RC frame buildings exposed to combined ground shaking and soil liquefaction considering SSI // Engineering Structures. 2021. Vol. 229. Issue 15. Article 111629. https://doi.org/10.1016/j.engstruct.2020.111629
- Forcellini D., Giardi F., Tanganelli M. Seismic assessment of the historical third tower in San Marino based on a 3D laser scanner survey (3D-LSS) // Innovative Infrastructure Solutions. 2019. Vol. 4. Article 20. https://doi.org/10.1007/s41062-019-0207-2
- Forcellini D. Analytical fragility curves of shallow-founded structures subjected to soil-structure interaction (SSI) effects // Soil Dynamics and Earthquake Engineering. 2021. Vol. 141. Article 106487. https://doi.org/10.1016/j.soildyn.2020.106487
- Cavalieri F., Correia A.A., Crowley H. Seismic fragility analysis of URM buildings founded on piles: influence of dynamic soil-structure interaction models // Bulletin of Earthquake Engineering. 2020. Vol. 18. Pp. 4127-4156. https://doi.org/10.1007/s10518-020-00853-9
- Bolisetti C., Whittaker A.S., Coleman J.L. Linear and nonlinear soil-structure interaction analysis of buildings and safety-related nuclear structures // Soil Dynamics and Earthquake Engineering. 2018. Vol. 107. Pp. 218-233.
- Ashayeri I., Biglari M., Formisano A., D'Amatoc M. Ambient vibration testing and empirical relation for natural period of historical mosques. Case study of eight mosques in Kermanshah, Iran // Construction and Building Materials. 2021. Vol. 289. Article 123191. https://doi.org/10.1016/j.conbuildmat.2021.123191
- Кужахметова Э.Р. Напряженно-деформированное состояние цилиндро-плитно-вантового покрытия здания (сооружения) с различными формами наружного опорного контура // Строительная механика инженерных конструкций и сооружений. 2020. Т. 16. № 2. С. 95-110. https://doi.org/10.22363/1815-5235-2020-16-2-95-110
- Кужахметова Э.Р. Конструктивные решения расположения вант в цилиндро-плитно-вантовом (ЦПВ) покрытии здания (сооружения) // Вестник БГТУ имени В.Г. Шухова. 2019. № 5. С. 77-89. https://doi.org/10.34031/article_5ce292ca24bc23.91006970
- Кужахметова Э.Р. Погружение, расчет и конструирование монолитной железобетонной сваи конической формы // Научное обозрение. Технические науки. 2017. № 2. С. 57-64.
- Кужахметова Э.Р. Исследование напряженно-деформированного состояния набивной монолитной железобетонной конусообразной сваи с щебневыми боковыми и нижними образованиями // Строительная механика инженерных конструкций и сооружений. 2021. Т. 17. № 4. С. 335-356. https://doi.org/10.22363/1815-5235-2021-17-4-335-356
- Кужахметова Э.Р. Влияние конструктивных решений на жесткостные характеристики набивной монолитной железобетонной конусообразной сваи со щебневыми образованиями // Строительная механика инженерных конструкций и сооружений. 2021. Т. 17. № 5. С. 500-518. https://doi.org/10.22363/1815-5235-2021-17-5-500-518
- Кужахметова Э.Р., Сапожников А.И. Сравнительный анализ работы длинных и коротких свай при горизонтальном загружении // Строительные материалы, оборудование, технологии XXI века. 2015. № 5-6 (196-197). С. 30-34.
- Сапожников А.И., Кужахметова Э.Р. Глубокое погружение и деформационный расчет монолитной сваи-оболочки большого диаметра // Международная научная конференция научно-педагогических работников Астраханского государственного технического университета, посвященная 85-летию со дня основания вуза (59 НПР): сборник трудов. Астрахань, 2015. С. 191-192.
- Рычков С.П. Моделирование конструкций в среде Femap with NX Nastran. М.: ДМК Пресс, 2013. 784 с.
- Шимкович Д.Г. Расчет конструкций в MSC/NASTRAN for Windows. М.: ДМК Пресс, 2003. 448 с.
- Зенкевич О.К. Метод конечных элементов в технике. М.: Изд-во «Мир», 1975. 540 c.
- Strang G., Fix G.J. The finite element method in one dimension. An analysis of the finite element method. New Jersey: Prentice-Hall, 1973. Pp. 51-62.
- Байков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс. М.: Стройиздат, 1991. 728 с.
- Кужахметова Э.Р. Моделирование свайного фундамента в среде Femap with NX Nastran // Строительная механика инженерных конструкций и сооружений. 2020. Т. 16. № 4. С. 250-260. https://doi.org/10.22363/1815-5235-2020-16-4-250-260
- Сутырин В.И., Шинкаренко И.А., Кужахметова Э.Р. Экспериментальный стенд для определения демпфирующих свойств материалов // Известия КГТУ. 2019. № 52. С. 177-183.
- Сутырин В.И., Кужахметова Э.Р., Шинкаренко И.А. Экспериментальное определение коэффициентов демпфирования грунтов // Основания, фундаменты и механика грунтов. 2022. № 4. С. 19-25.
- Sutyrin V.I., Kuzhakhmetova E.R., Shinkarenko I.A. Experimental determination of soil damping coefficients // Soil Mechanics and Foundation Engineering. 2022. Vol. 59. Pp. 362-370. https://doi.org/10.1007/s11204-022-09823-6