COMPUTER PROGRAM CALCULATION ACCURACYHINGE-BAR SYSTEMS

Cover Page

Cite item

Abstract

This article gives an overview and analysis of previous studies, as well as computer programs for calculation of accuracy, including construction steel. The description and analysis of the functionality of the new computer complex "Dimensional Analysis of beam structures" (VC RASK). Verification of EC RASK, confirming the correctness and accuracy of the calculation accuracy. Achieved description of the user experience technology with various menus and the whole VC RASK. An example of the calculation accuracy of the example odnopoyasnoy hinged-rod metal shell. The general form of hinged-rod with metal objects to using the VC RASK can be made exactly the calculation can be varied: a cylindrical, spherical, elliptical, toroidal, conical and other.

About the authors

А B BОNDAREV

Joint Stock Company "Matrosov Mine" (JSC «RiM»), Russian Federation

Author for correspondence.
Email: bondarev_a_b_rus@mail.ru

инженер по металлоконструкциям строительной дирекции

685000, Магадан, ул. Пролетарская, д. 12

References

  1. Abusamra, Avad Yusif Attalman Influence of initial imperfections designs of two-mesh domes on their load-carrying capacity: the thesis submitted for the Scientific Degree on competition of Candidate of Engineering. Rostov-on-Don. 2006. 148 p.
  2. Alyamovsky A. A., Sobachkin A. A., Odintsov E. V., Kharitonovich A. I., Ponomarev N. B. Solid Works. Computer modeling in engineering practice. SPb.: BHV-Petersburg. 2005. 800 p.
  3. Ankin A. V., Kuzminskiy D. L. Software to calculate the spatial dimension chains. Proceedings of the MSTU "MAMI". Section 2. Mechanical Engineering and Materials. М.: МАМІ, 2011. №2, Vol. 12. P. 106—110.
  4. Certificate on registration of copyright in a computer program number 47952 Ukraine. Computer program «Computational Complex "Dimensional analysis of rod structures"» («CC DASC») / A. B. Bondarev, A. M. Yugov (Ukraine). No. 48382; declaration 20.12.2012; published 20.02.2013, Bul. No. 1. 2 p. (in Russian)
  5. Bondarev Alexey. The Method of Determination of Mounting Stress-Strain State-Span Hinge-Rod Metal Coatings. Metal Constructions, 2016. Volume 22. Number 2. P. 67—82.
  6. Bondarev, A. B.; Yugov, A. M. Тhe method of calculating the accuracy of large-span metal rod systems. Magazine of Civil Engineering, 2016. No. 1(61). P. 60—73.
  7. GOST 21780-2006. Russian State Standard 21780-2006. System for ensuring the accuracy of the geometric parameters in construction. Calculation accuracy. M.: Publishing standards. 13 р.
  8. Isaev S. V. Methodology to evaluate the linear model of the spatial dimension chain to ensure interchangeability of production facilities for assembly. Ph.D. Dissertation Special: 05.11.15. Moscow, 2007. 204 p.
  9. Kashuba L. A. Deformable geometry of the assembly parts. System analysis in science and education. Electronic scientific journal. Dubna. 2011. №4. [Electronic resource]. URL: http: / www.sanse.ru/archive/19
  10. Lebed E.V., Shebalina O.V. Analysis of Distortions of the Geometric Shape in the Assembly of Composite Metal Structures. Industrial Construction. 1992. No. 5. P. 23—24.
  11. Lebed E. V.; Eterevsky V. A. Analysis of initial stresses in a sectorial lattice dome during installation as an assembled structure in comparison with a star lattice dome. Bulletin of Peoples’ Friendship University of Russia. Series: Engineering Researches, 2012, No. 4. P. 91—98.
  12. Lebed E.V. Geometric calculation of space structures frame. Textbook. Saratov: SSTU. 2001. 40 p.
  13. Lebed E.V. Computer Modeling of the Accuracy of Erecting Two-Layer Metal Domes. Industrial and Civil Engineering. 2013. No. 12. P. 89—92.
  14. Lebed E.V. Eterevsky V.A. Initial stresses in the bars of a one-layer lattice dome due to the imperfections of its form during installation as an assembled structure. Proceedings of Moscow State University of Civil Engineering. 2011. Vol. 2. No. 2. P. 137—144.
  15. Lebed E.V. Particularities of numerical simulation of carcassing of single-grid dome. In: Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Civil Engineering and Architecture. 2003. Issue 3(9). P. 81—86.
  16. Lebed E.V. Assessment of accuracy of calculation of root-mean-square deviation of chance variable. Moscow. 1991. 5 р.
  17. Lebed E.V. Prediction errors in the construction of large-span metal dome based on geometric modeling of their installation: the thesis submitted for the Scientific Degree on competition of Candidate of Engineering. Moscow. 1988. 171 p.
  18. Lebed E.V. Forecasting of errors of carcassing of large-span high-rise ribbed dome. Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Technical science, 2003, Issue 2–3(8). P. 11—17.
  19. Lebed E.V. Accuracy in construction of metal space framed roofs and its predicting. Bulletin of Peoples' Friendship University of Russia. Series: Engineering Researches. 2013. No. 4. P. 5—12.
  20. Lebed E.V. Numerical investigation of imprecision of construction of long span steel domes in ECM. Advanced of structural concepts and methods of analysis of engineering structures: inter-university scientific collection. Edited by Shagivaleev K.F. Saratov: SSTU. 1999. P. 45—52.
  21. Moiceev M.V. Starting effort and collection of steel structural constructions in the process of accidental variation of grip length: the thesis submitted for the Scientific Degree on competition of Candidate of Engineering. Kazan, 2004. 164 p.
  22. Getting Started in MicroSurvey CAD 2010. User Guide. MicroSurvey Software Inc. Westbank, BC: Standard and PLUS. - 2011. - 248 p.
  23. Guide and other materials on the program GEOZEM. [Electronic resource]. URL: http://www.geozem.com.
  24. User Manual Objectland в HTML. [Electronic resource]. URL: www.objectland.ru/support/doc/ usermanual.
  25. Savelyev V.A. Theoretical foundations of metal cupolas: Author’s abstract the thesis submitted for the Scientific Degree on competition of Doctor of Engineering. Moscow. 1995. 40 p.
  26. Savelev V.A., Lebed E.V. Numerical simulation of real form of overhanging composite construction. Moscow. 1988. 24 p.
  27. Savelev V.A., Lebed E.V., Shebalina O.V. Mathematical Modeling of Spatial Structures Installation. Industrial Construction. 1991. No. 1. P. 18—20.
  28. Shalomeenko M. A. Dimensional Analysis in Solid Works. // CAD and graphics. Tools APM. 2010. No 10. P. 40—42.
  29. Yugov, Anatoliy; Bondarev, Alexey Assembly Efforts in Wide-Span Spatial Rod System Determining Technique. Metal Constructions. 2013. Volume 19. Number 3. P. 137—142.
  30. User Manual AutoCAD Civil 3D 2009. US: Autodesk. 2008. 2452 p.
  31. Bondarev A.В., Yugov A.М. The Method of Generating Large-Span Rod Systems with the Manufacturer Defect and Assembly Sequence. Procedia Engineering. 2015. Vol. 117. P. 953—963.
  32. Charles R. Farrar, Worden Keith, Todd D. Michael, Park Gyuhae, Nichols Jonathon, Adams E. Douglas, Bement T. Matthew, Farinholt Kevin Impacts of artificial intelligence and optimization on design, construction and maintenance. Los Alamos, New Mexico: Los Alamos. National Laboratory. 2007. 143 р.
  33. Gaul L., Albrecht H., Wirnitzer J. Semi-active friction damping of large space truss structures. Shock and Vibration. 2004. Vol. 11. P. 173—186.
  34. Hasan R., Xu L., Grierson D.E. Push-over analysis for performance-based seismic design. Computers and Structures. 2002. № 80. P. 2483—2493.
  35. Kaouk Zimmerman Structural damage assessment using a generalized minimum rank perturbation theory. Proceedings of the 34th AlAA SDM Conference. La Jolla. California. 1993. P. 1529—1538.
  36. Kartal M.E. Basaga H.B., Bayraktar A., Muvafık M. Effects of semi-rigid connection on structural responses. Electronic Journal of Structural Engineering. 2010. Vol. 10. P. 22—35.
  37. Kohtaro Matsumoto, Wakabayashi Sachiko, Noumi Masahiro, Yoshida Tetsuji, Ueno Hiroshi, Fukase Yutaro Space Truss Handling Experiment on ETS-VII. Automation and Robotics in Construction XVI. UC3M. 1999. P. 225—230.
  38. Kaveh A., Nouri M. Weighted graph products for configuration processing of planar and space structures. International Journal of Space Structures. 2009. Vol. 24. No1. P. 13—26.
  39. Makoto Ohsaki Zhang Jingyao Stability conditions of press stressed pin-jointed structures. International Journal of Non-Linear Mechanics. 2006. Vol. 41. P. 1109—1117.
  40. Makowski Z.S. Development of jointing systems for modular prefabricated steel space structures. Proceedings of the international symposium. Warsaw: Poland. 2002. P. 17—41.
  41. Ömer KELEŞOĞLU, Mehmet ÜLKER Fuzzy optimization of geometrical nonlinear space truss design. Turkish Journal of Engineering and Environmental Sciences. 2005. Vol. 80. № 5. P. 321—329.
  42. Pearson J.E., Hansen S. Experimental Studies of a Deformable-Mirror Adaptive Optical System. Journal of Optical Society America. 1977. № 67. P. 360—369.
  43. Tokunbo Ogunfunmi Adaptive Nonlinear System Identification. The Volterra and Wiener Model Approaches. USA: Springer Science+Business Media, LLC. 2007. 229 р.
  44. Tsou P., Shen M.-H. Structural damage detection and identification using neural network // Proceedings of the 34th. SDM Conference. La Jolla, California. April. 1993. P. 3551—3560.
  45. Yue Yin Huang Xin, Han Qinghua, Bai1 Linjia Study on the accuracy of response spectrum method for long span reticulated shells. International Journal of Space Structures. 2009. Vol. 24. № 1. P. 27—35.

Copyright (c) 2017 БОНДАРЕВ А.Б.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies