Dynamic Response of Doubly-Curved Shallow Shells to Periodic External Action

Cover Page

Cite item

Abstract

Shallow shells of double curvature are often used as elements of building structures and are subjected to various external effects, including dynamic periodic loads. The paper proposes to extend the previously proposed approach to modeling the process of deformation of thin shells to a class of problems with periodic effects. A mathematical model is used based on the Timoshenko - Reissner hypotheses, taking into account transverse shears, geometric nonlinearity and rotational inertia. The calculation algorithm is based on the method of L.V. Kantorovich and the Rosenbrock method for solving rigid ODE systems. The calculations are performed in Maple. Dynamic responses are obtained for an isotropic shallow shell of double curvature at different frequency values, and vertical displacement fields are shown at peak values of the oscillation amplitude.

About the authors

Alexey A. Semenov

Saint Petersburg State University of Architecture and Civil Engineering

Author for correspondence.
Email: sw.semenov@gmail.com
ORCID iD: 0000-0001-9490-7364
SPIN-code: 9057-9882

Doctor of Technical Sciences, Professor of the Department of Information Systems and Technologies

Saint Petersburg, Russia

References

  1. Bich D.H., Ninh D.G. Research on dynamical buckling of imperfect stiffened three-layered toroidal shell segments containing fluid under mechanical loads. Acta Mechanica. 2017;228(2):711-730. http://doi.org/10.1007/s00707-016-1724-0
  2. Gao K., Gao W., Wu D., Song C. Nonlinear dynamic stability of the orthotropic functionally graded cylindrical shell surrounded by Winkler-Pasternak elastic foundation subjected to a linearly increasing load. Journal of Sound and Vibration. 2018;415:147-168. http://doi.org/10.1016/j.jsv.2017.11.038
  3. Lavrenčič M., Brank B. Simulation of shell buckling by implicit dynamics and numerically dissipative schemes. Thin-Walled Structures. 2018;132:682-699. http://doi.org/10.1016/j.tws.2018.08.010
  4. Luo K., Liu C., Tian Q., Hu H. Nonlinear static and dynamic analysis of hyper-elastic thin shells via the absolute nodal coordinate formulation. Nonlinear Dynamics. 2016;85(2):949-971. http://doi.org/10.1007/s11071-016-2735-z
  5. Ren S., Song Y., Zhang A.-M., Wang S., Li P. Experimental study on dynamic buckling of submerged grid-stiffened cylindrical shells under intermediate-velocity impact. Applied Ocean Research. 2018;74:237-245. http://doi.org/10.1016/j.apor.2018.02.018
  6. Sirivolu D., Hoo Fatt M.S. Dynamic stability of double-curvature composite shells under external blast. International Journal of Non-Linear Mechanics. 2015;77:281-290. http://doi.org/10.1016/j.ijnonlinmec.2015.09.005
  7. Sofiyev A.H., Kuruoglu N. Domains of dynamic instability of FGM conical shells under time dependent periodic loads. Composite Structures. 2016;136:139-148. http://doi.org/10.1016/j.compstruct.2015.09.060
  8. Amabili M., Paı̈doussis M.P. Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Applied Mechanics Reviews. 2003;56(4):349-381. http://doi.org/10.1115/1.1565084
  9. Dey T., Ramachandra L.S. Dynamic stability of simply supported composite cylindrical shells under partial axial loading. Journal of Sound and Vibration. 2015;353:272-291. http://doi.org/10.1016/j.jsv.2015.05.021
  10. Dung D.V., Nam V.H. An analytical approach to analyze nonlinear dynamic response of eccentrically stiffened functionally graded circular cylindrical shells subjected to time dependent axial compression and external pressure. Part 2: Numerical results and discussion. Vietnam Journal of Mechanics. 2014;36(4):255-265. http://doi.org/10.15625/08667136/36/4/3986
  11. Kiani Y., Sadighi M., Eslami M.R. Dynamic analysis and active control of smart doubly curved FGM panels. Composite Structures. 2013;102:205-216. http://doi.org/10.1016/j.compstruct.2013.02.031
  12. Krysko V.A., Awrejcewicz J., Shchekaturova T.V. Chaotic vibrations of spherical and conical axially symmetric shells. Archive of Applied Mechanics. 2005;74(5-6):338-358. http://doi.org/10.1007/BF02637035
  13. Moussaoui F., Benamar R. Non-Linear Vibrations of Shell-Type Structures: A Review with Bibliography. Journal of Sound and Vibration. 2002;55(1):161-184. http://doi.org/10.1006/jsvi.2001.4146
  14. Qu Y., Wu S., Chen Y., Hua H. Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach. International Journal of Mechanical Sciences. 2013;69:72-84. http://doi.org/10.1016/j.ijmecsci.2013.01.026
  15. Ungbhakorn V., Singhatanadgid P. A Scaling Law for Vibration Response of Laminated Doubly Curved Shallow Shells by Energy Approach. Mechanics of Advanced Materials and Structures. 2009;16(5):333-344. http://doi.org/10.1080/ 15376490902970430
  16. Abrosimov N.A., Novosel’tseva N.A. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading. Mechanics of Composite Materials. 2017;53(2):139-148. http://doi.org/10.1007/s11029017-9648-x
  17. Kumar Y. The Rayleigh-Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review. Journal of Vibration and Control. 2017;24(7):1205-1227. http://doi.org/10.1177/1077546317694724
  18. Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review). International Applied Mechanics. 2012;48(6):613- 687. http://doi.org/10.1007/s10778-012-0544-8
  19. Dey T., Jansen E., Kumar R., Rolfes R. Instability characteristics of variable stiffness laminated composite curved panels under non-uniform periodic excitation. Thin-Walled Structures. 2022;171:108735. http://doi.org/10.1016/j.tws.2021. 108735
  20. Karpov V.V. The strength and stability of reinforced shells of revolution. In two parts. Part 1. Models and algorithms of research of the strength and stability of supported shells of revolution. Moscow: Fizmatlit Publ.; 2010. (In Russ.) EDN: UIRNWJ
  21. Ng T.Y., Lam K.Y., Reddy J.N. Dynamic stability of cylindrical panels with transverse shear effects. International Journal of Solids and Structures. 1999. Vol. 36. No. 23. P. 3483-3496. http://doi.org/10.1016/S0020-7683(98)00161-9
  22. Yu Y.-Y., Lai J.-L. Influence of Transverse Shear and Edge Condition on Nonlinear Vibration and Dynamic Buckling of Homogeneous and Sandwich Plates. Transactions of the ASME. 1966;33(4):934-936. http://doi.org/10.1115/1.3625205
  23. Bacciocchi M., Eisenberger M., Fantuzzi N., Tornabene F., Viola E. Vibration analysis of variable thickness plates and shells by the Generalized Differential Quadrature method. Composite Structures. 2016;156:218-237. http://doi.org/10.1016/j.compstruct.2015.12.004
  24. Patel S.N., Datta P.K., Sheikh A.H. Buckling and dynamic instability analysis of stiffened shell panels. Thin- Walled Structures. 2006;44(3):321-333. http://doi.org/10.1016/j.tws.2006.03.004
  25. Zhang J., van Campen D.H. Stability and bifurcation of doubly curved shallow panels under quasi-static uniform load. International Journal of Non-Linear Mechanics. 2003;38(4):457-466. http://doi.org/10.1016/S0020-7462(01)00069-5
  26. Azarboni H.R., Ansari R., Nazarinezhad A. Chaotic dynamics and stability of functionally graded material doubly curved shallow shells. Chaos, Solitons & Fractals. 2018;109:14-25. http://doi.org/10.1016/j.chaos.2018.02.011
  27. Khudayarov B.A., Ruzmetov K.Sh., Turaev F.Zh., Vaxobov V.V., Hidoyatova M.A., Mirzaev S.S., Abdikarimov R. Numerical modeling of nonlinear vibrations of viscoelastic shallow shells. Engineering Solid Mechanics. 2020:199-204. http://doi.org/10.5267/j.esm.2020.1.004
  28. Bazhenov V.G., Baranova M.S., Kibets A.I., Lomunov V.K., Pavlenkova E.V. Buckling of elastic-plastic cylindrical and conical shells under axial impact loading. Scientific Notes of Kazan University. Series: Physical and Mathematical Sciences, 2010;152(4):86-105. EDN: NPULEB Баженов В.Г., Баранова М.С., Кибец А.И., Ломунов В.К., Павленкова Е.В. Выпучивание упругопластических цилиндрических и конических оболочек при осевом ударном нагружении // Ученые записки Казанского университета. Серия: Физико-математические науки. 2010. Т. 152. № 4. С. 86-105. EDN: NPULEB
  29. Wei Z.G., Yu J.L., Batra R.C. Dynamic buckling of thin cylindrical shells under axial impact. International Journal of Impact Engineering. 2005;32(1-4):575-592. http://doi.org/10.1016/j.ijimpeng.2005.07.008
  30. Zhang J., Li S. Dynamic buckling of FGM truncated conical shells subjected to non-uniform normal impact load. Composite Structures. 2010;92(12):2979-2983. http://doi.org/10.1016/j.compstruct.2010.05.009
  31. Eshmatov B., Abdikarimov R., Amabili M., Vatin N. Nonlinear vibrations and dynamic stability of viscoelastic anisotropic fiber reinforced plates. Magazine of Civil Engineering. 2023;118(1):11811. http://doi.org/10.34910/MCE.118.11
  32. Phu K.V., Bich D.H., Doan L.X. Nonlinear Forced Vibration and Dynamic Buckling Analysis for Functionally Graded Cylindrical Shells with Variable Thickness Subjected to Mechanical Load. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2022;46:649-665. http://doi.org/10.1007/s40997-021-00429-1
  33. Keshav V., Patel S.N., Kumar R., Watts G. Effect of Cutout on the Stability and Failure of Laminated Composite Cylindrical Panels Subjected to In-Plane Pulse Loads. International Journal of Structural Stability and Dynamics. 2022; 22(08):2250087. http://doi.org/10.1142/S0219455422500870
  34. Kogan E.A., Yurchenko A.A. Nonlinear Oscillations of a Three-Layer and Multi-Layer Plates and Shells During Periodic Impacts (Survey). News of MSTU “MAMI”: Natural Sciences. 2014;4(1):55-70. (In Russ.) EDN: SKYBIX
  35. Alijani F., Amabili M. Non-linear vibrations of shells: A literature review from 2003 to 2013. International Journal of Non-Linear Mechanics. 2014;58:233-257. http://doi.org/10.1016/j.ijnonlinmec.2013.09.012
  36. Krivoshapko S.N. Research on General and Axisymmetric Ellipsoidal Shells Used as Domes, Pressure Vessels, and Tanks. Applied Mechanics Reviews. 2007;60(6):336-355. http://doi.org/10.1115/1.2806278
  37. Qatu M.S., Sullivan R.W., Wang W. Recent research advances on the dynamic analysis of composite shells: 2000-2009. Composite Structures. 2010;93(1):14-31. http://doi.org/10.1016/j.compstruct.2010.05.014
  38. Sahu S.K., Datta P.K. Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987-2005 - Part I: Conservative Systems. Applied Mechanics Reviews. 2007;60(2):65-75. http://doi.org/10.1115/1.2515580
  39. Prado Z. del, Gonçalves P.B., Païdoussis M.P. Non-linear vibrations and instabilities of orthotropic cylindrical shells with internal flowing fluid. International Journal of Mechanical Sciences. 2010;52(11):1437-1457. http://doi.org/10.1016/j.ijmecsci.2010.03.016
  40. Volmir A.S. Stability of deformable systems. Moscow: Nauka Publ.; 1967. (In Russ.)
  41. Karpov V.V., Aristov D.I., Ovcharov A.A. Features of the stress-strain state of panels of ribbed shells of revolution under dynamic loading. Vestnik TGASU. 2007;(1):94-101. (In Russ.) EDN: JUCZAN
  42. Semenov A. Dynamic Buckling of Stiffened Shell Structures with Transverse Shears under Linearly Increasing Load. Journal of Applied and Computational Mechanics. 2022;8(4):1343-1357. http://doi.org/10.22055/jacm.2022.39718.3452
  43. Hairer E., Wanner G. Solving Ordinary Differential Equations II : Springer Series in Computational Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. http://doi.org/10.1007/978-3-662-09947-6
  44. Shampine L.F., Corless R.M. Initial value problems for ODEs in problem solving environments. Journal of Computational and Applied Mathematics. 2000;125(1-2):31-40. http://doi.org/10.1016/S0377-0427(00)00456-8

Copyright (c) 2024 Semenov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies