Stress-Strain State of Steel Fiber-Reinforced Concrete under Compression Taking into Account Unloading from Inelastic Region
- Authors: Agapov V.P.1, Markovich A.S.1,2, Dkhar P.1, Golishevskaia D.A.1
-
Affiliations:
- RUDN University
- National Research Moscow State University of Civil Engineering
- Issue: Vol 20, No 2 (2024)
- Pages: 170-181
- Section: Experimental researches
- URL: https://journals.rudn.ru/structural-mechanics/article/view/39222
- DOI: https://doi.org/10.22363/1815-5235-2024-20-2-170-181
- EDN: https://elibrary.ru/HHPHBS
Cite item
Full Text
Abstract
The purpose of the study is to examine the physical and mechanical characteristics of steel fiber-reinforced concrete under compression, including: modulus of elasticity, Poisson ratio, values of ultimate strains under compression, values of compressive strength with different percentages of dispersed reinforcement. An experimental investigation program, which included the production of cube samples measuring 100×100×100 mm, as well as a compression test under static loading, taking into account unloading from the region of inelastic deformations, was developed and carried out. Two types of steel fiber were chosen as dispersed reinforcement: hooked end and wave shape. The volume content of steel fiber in the cube samples was 0.5, 1.0, 1.5 and 2.0 %. As a result of the investigation, the strength and deformation characteristics of steel fiber reinforced concrete under compression were obtained. Based on the experimental data, actual strain diagrams of steel fiber reinforced concrete were constructed, taking into account the type of reinforcing fibers and the percentage of reinforcing fiber. Based on the obtained diagrams, a law of deformation of steel fiber reinforced concrete is proposed, which can be described by a polynomial function of the fourth order with constant coefficients that determine the shape of the stress-strain curve. The presented research results can be used in developing a methodology for physically nonlinear analysis of steel fiber reinforced concrete elements with a percentage of dispersed reinforcement from 0.5 to 2.0 %.
About the authors
Vladimir P. Agapov
RUDN University
Email: agapovpb@mail.ru
ORCID iD: 0000-0002-1749-5797
SPIN-code: 2422-0104
Doctor of Technical Sciences, Professor of the Department of Civil Engineering, Engineering Academy
Moscow, RussiaAlexey S. Markovich
RUDN University; National Research Moscow State University of Civil Engineering
Email: markovich-as@rudn.ru
ORCID iD: 0000-0003-3967-2114
SPIN-code: 9203-1434
Candidate of Technical Sciences, Associate Professor of the Department of Civil Engineering, Academy of Engineering
Moscow, RussiaPrashanta Dkhar
RUDN University
Email: dkhar-p@rudn.ru
ORCID iD: 0000-0002-7888-5350
SPIN-code: 5670-7662
Candidate of Technical Sciences, Senior Lecturer of the Department of Civil Engineering, Academy of Engineering
Moscow, RussiaDarya A. Golishevskaia
RUDN University
Author for correspondence.
Email: miloserdova-da@rudn.ru
ORCID iD: 0000-0003-0835-528X
SPIN-code: 1276-6516
Assistant of the Department of Civil Engineering, Academy of Engineering
Moscow, RussiaReferences
- Rabinovich F.N. Composites based on dispersed reinforced concrete. Questions of theory and design, technology,constructions: monograph. Moscow: ASV Publ.; 2011. (In Russ.) EDN: QNPRVR
- Markovich A.S., Miloserdova D.A. Properties of dispersed fibers for efficient concrete reinforcement. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(2):182–192. (In Russ.) https://doi.org/10.22363/18155235-2022-18-2-182-192
- Pukharenko Yu.V., Aubakirova I.U., Skoblikov V.A., Letenko D.G., Nikitin V.A., Charykov N.A. Application ofnanosystems in the steel fibrous concrete production. Bulletin of civil engineers. 2011;3(28):77–81. (In Russ.) EDN: OPHUOT
- Kluev A.V. Steel fiber reinforced concrete for prefabricated monolithic construction. Bulletin of BSTU named after V.G. Shukhov. 2011;(2):60–63. (In Russ.) EDN: NYATIP
- Talantova K.V., Mikheev N.M. A kinetic study of the alcoholic fermentation reaction using a pine nut shell as apacking element. Polzunovskij vestnik. 2011;(1):194–198. (In Russ.) EDN: OCSKFP
- Gorokhov M.S. Crack resistance of fiber-reinforced concrete with steel anchor fiber. Bulletin of the State University of Marine and River Fleet named after Admiral S. O. Makarov. 2014;5(27):47-53. (In Russ.) EDN: SWLTOF
- Markovich A.S., Miloserdova D.A. Properties of dispersed fibers for efficient concrete reinforcement. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(2):182–192. (In Russ.) https://doi.org/10.22363/18155235-2022-18-2-182-192
- Khegai A.O., Kirilin N.M., Khegai T.S., Khegai O.N. Experimental investigation of stress-strain properties of steelfiber reinforced concrete of the higher classes. Bulletin of civil engineers. 2020;6(83):77–82. (In Russ.) https://doi.org/10.23968/1999-5571-2020-17-6-77-82
- Karpenko N.I., Moiseenko G.A. Investigation of the properties of high-strength steel fiber concrete with aminimum effective fiber content under loads of various durations. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(6):503–514. (In Russ.) http://doi.org/10.22363/1815-5235-2022-18-6-503-514
- Yoo D.-Y., Banthia N. Impact resistance of fiber-reinforced concrete — A review. Cement and Concrete Composites. 2019;104:2019. https://doi.org/10.1016/j.cemconcomp.2019.103389
- Yusuf M.S., Isak A.B., Mohamud G.A., Warsame A.H., Osman Y.I., Ibrahim A.H., Elmi L.A.A. Effect of SteelFiber on Concrete’s Compressive Strength. Open Journal of Civil Engineering. 2023;13:192–197. https://doi.org/10.4236/ojce.2023.131014
- Zhao M., Li C., Li J., Yue L. Experimental Study on the Performance of Steel-Fiber-Reinforced Concrete forRemote-Pumping Construction. Materials. 2023;16(10):3666. https://doi.org/10.3390/ma16103666
- Ding X., Zhao M., Zhou S., Fu Y., Li C. Statistical Analysis and Preliminary Study on the Mix Proportion Designof Self-Compacting Steel Fiber Reinforced Concrete. Materials. 2019;12(4):637. https://doi.org/10.3390/ma12040637
- Mohtasham Moein M., Saradar A., Rahmati K., Hatami Shirkouh A., Sadrinejad I., Aramali V., Karakouzian M. Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers. Materials. 2022; 15(20):7157. https://doi.org/10.3390/ma15207157
- More F.M.D.S., Subramanian S.S. Impact of Fibres on the Mechanical and Durable Behaviour of FibreReinforced Concrete. Buildings. 2022;12(9):1436. https://doi.org/10.3390/buildings12091436
- Alrawashdeh A., Eren O. Mechanical and physical characterisation of steel fibre reinforced self-compactingconcrete: Different aspect ratios and volume fractions of fibres. Results in Engineering. 2022;13:100335. https://doi.org/10.1016/j.rineng.2022.100335
- Khan M., Cao M., Xie C., Ali M. Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression.Case Studies in Construction Materials. 2022;16:e00941. https://doi.org/10.1016/j.cscm.2022.e00941
- Hrabová K., Láník J., Lehner P. Statistical and Practical Evaluation of the Mechanical and Fracture Properties of Steel Fibre Reinforced Concrete. Buildings. 2022;12(8):1082. https://doi.org/10.3390/buildings12081082
- Moiseenko G.A. Method for construction of isochron diagrams of high-strength steel fiber concrete and itsmatrix. Building and Reconstruction. 2020;(5):32–45. https://doi.org/10.33979/2073-7416-2020-90-4-32-45
- Klyuev S.V., Klyuev A.V., Abakarov A.D., Shorstova E.S., Gafarova N.G. The effect of particulate reinforcementon strength and deformation characteristics of fine-grained concrete. Magazine of Civil Engineering. 2017;7:66–75. https://doi.org/10.18720/MCE.75.6
- Lesovik R.V., Klyuev A.V., Klyuev S.V. Finegrained steel fiber concrete based on the sand of a technogenicto obtain prefabricated structures. Concrete Technologies. 2014;4(2):44–45. (In Russ.) EDN: SZTHMX
- Sidorov V.N., Akimov P.A., Hegai A.O. Experimental researches of high-strength fibro-concrete and appliedproblems of structural analysis. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2010;4(2):427–435. (In Russ.)
- Stepanov M.V., Moiseenko G.A. Deformation diagrams of fine-grained high-strength concrete and high-strengthsteel-fibro concrete under compression. Building and reconstruction. 2019;3(83):11–21. (In Russ.) https://doi.org/10.33979/2073-7416-2019-83-3-11-21
- Tamov M.M., Salib M.I.F., Abuizeh Y.Q.Y., Sofianikov O.D. Mix design and study of strength properties of selfcompacting ultra high-performance fiber-reinforced concrete. News of higher educational institutions. Construction. 2022;4(760):25–39. (In Russ.) https://doi.org/10.32683/0536-1052-2022-760-4-25-39
- Hu L., Li S., Zhu J., Yang X. Mathematical Model of Constitutive Relation and Failure Criteria of PlasticConcrete under True Triaxial Compressive Stress. Materials. 2021;14(1):102. https://doi.org/10.3390/ma14010102