Задача о кручении: постановка в напряжениях и решение методом граничных элементов
- Авторы: Лалин В.В.1,2, Семенов Д.А.1
-
Учреждения:
- Санкт-Петербургский политехнический университет Петра Великого
- Российский университет дружбы народов
- Выпуск: Том 19, № 4 (2023)
- Страницы: 339-348
- Раздел: Аналитические и численные методы расчета конструкций
- URL: https://journals.rudn.ru/structural-mechanics/article/view/36834
- DOI: https://doi.org/10.22363/1815-5235-2023-19-4-339-348
- EDN: https://elibrary.ru/WXVNUL
- ID: 36834
Цитировать
Полный текст
Аннотация
Приводится постановка задачи о кручении относительно напряжений и ее решение методом граничных элементов. Основным достоинством данной постановки задачи является непосредственное определение напряжений в сечении, в отличие от классической постановки, где результатом приближенного решения являются значения функции напряжений Прандтля, а определение напряжений сводится к численному дифференцированию. Для постановки задачи относительно напряжений получено граничное интегральное уравнение второго рода. Описана процедура решения задачи методом граничных элементов, составлена система разрешающих уравнений. Представлены решения тестовых задач о кручении стержней прямоугольного и швеллерного сечений. Сопоставление результатов расчета с известными аналитическими решениями иллюстрирует достоверность и допустимую инженерную точность полученных решений.
Полный текст
1. Introduction The torsion problem for elastic prismatic rods is one of the oldest problems in the theory of elasticity. It was mathematically formulated by Saint-Venant in the middle of the 19th century. Before the broad spread of ECM, many problems for bars with relatively simple shapes of cross-section were solved analytically. The obtained solutions were summarized in the monograph [1]. With the creation of ECM, it became possible to obtain numerical solutions to the problem of torsion for bars with an arbitrary cross-section. This led to the rapid development of numerical methods for solving torsion problems and problems of potential theory that are similar in their mathematical formulation. In spite of their considerable age, these problems are still the subject of research for many scientists and engineers. These works contain formulations and methods for solving problems for inhomogeneous bars [2; 3], nanosized bars [4], problems of dynamics [5] and others. One of the widely used numerical methods for solving torsion problems is the boundary elements method (BEM) [7-13]. This method has been actively developed since the 70s of the 20th century, but up to now its new formulations continue to appear, including those for torsion problems of bars [14-18]. The traditional mathematical formulation of the torsion problem consists of finding the stress function1 [1; 19], and the stresses themselves are subsequently found by differentiation of the stress function [20; 21]. From the point of view of determining the stresses in a cross-section in numerical solution, the formulation of the problem regarding the stress function has two significant disadvantages. Since the result of the approximate solution of the problem in such a formulation is actually the values of the stress function in the nodes of boundary elements, then the determination of stresses is reduced to numerical differentiation. This leads to an additional source of computational error. The second reason reducing the accuracy of the solution is the fact that the boundary integral equation regarding the stress function is a numerically unstable equation of the first kind2. This paper presents a formulation of the torsion problem in stresses, derives the boundary integral equation regarding stresses, and describes the procedure for solving the problem by the boundary elements method. In difference from the classical formulation, the proposed formulation leads to an integral equation of the second kind, and its numerical algorithm is a stable one2. The verification of the methodology was carried out on the example of two cross-sections by means of comparing the numerical solution of the problem with the known analytical one. 2. Methods Formulation of the torsion problem regarding stresses Consider the problem of torsion for a prismatic bar of an arbitrary cross-section under the action of two external moments which lie in the plane of its outermost cross-sections. We consider the volumetric forces to be equal to zero and the lateral surface to be free of external loads. The following coordinate system has been choosen: the z-axis coincides with the axis of torsion, i.e., the axis that remains unmoved when the bar is twisted; the x- and y-axes are mutually orthogonal and located randomly in the plane of the cross-section. The problem of torsion of a bar with cross-section S and contour Γ, is formulated in terms of the Prandtl stress function F in the following way[1] [24]:Об авторах
Владимир Владимирович Лалин
Санкт-Петербургский политехнический университет Петра Великого; Российский университет дружбы народов
Автор, ответственный за переписку.
Email: vllalin@yandex.ru
ORCID iD: 0000-0003-3850-424X
доктор технических наук, профессор Высшей школы промышленно-гражданского и дорожного строительства Инженерно-строительного института
Санкт-Петербург, Российская Федерация; Москва, Российская ФедерацияДаниил Аркадьевич Семенов
Санкт-Петербургский политехнический университет Петра Великого
Email: dan290797@gmail.com
ORCID iD: 0000-0002-9144-1412
аспирант Высшей школы промышленно-гражданского и дорожного строительства Инженерно-строительного института
Санкт-Петербург, Российская ФедерацияСписок литературы
- Арутюнян Н.Х., Абрамян Б.Л. Кручение упругих тел. М.: Физматгиз, 1963. 688 с.
- Chen H., Gomez J., Pindera M.J. Saint Venant’s torsion of homogeneous and composite bars by the finite volume method. Composite Structures. 2020;242:112-128. https://doi.org/10.1016/j.compstruct.2020.112128
- Chen K.H., Kao J.H., Chen J.T., Liau J.F. A new error estimation technique for solving torsion bar problem with inclusion by using BEM. Engineering Analysis with Boundary Elements. 2020;115:168-211. https://doi.org/10.1016/j.enganabound.2020.02.012
- Ma X., Kiani K. Spatially nonlocal instability modeling of torsionaly loaded nanobeans. Engineering Analysis with Boundary Elements. 2023;154:29-46. https://doi.org/10.1016/j.enganabound.2023.05.012
- Labaki J., A Barros P.L., Mesquita E. A model of the time-harmonic torsional response of piled plates using an IBEM-FEM coupling. Engineering Analysis with Boundary Elements. 2021;125:241-249. https://doi.org/10.1016/j.enganabound. 2021.01.010
- Sapountzakis E.J., Tsipiras V.J., Argyridi A.K. Torsional vibration analysis of bars including secondary torsional shear deformation effect by the boundary element method. Journal of Sound and Vibration. 2015;355:208-231. https://doi.org/10.1016/j.jsv.2015.04.032
- Katsikadelis J.T. The Boundary Element Method for Engineers and Scientists. Theory and Applications. Athens: School of Civil Engineering. National Technical University of Athens; 2016.
- Fairweather G., Rizzo F.J., Shippy D.J., Wu Y.S. On the numerical solution of two-dimensional potential problems by an improved boundary integral equation method. Journal of computational physics. 1979;31:96-112.
- Brebbia C.A., Telles J.C.F., Wrobel L.C. Boundary Element Techniques: Theory and Applications in Engineering. SpringerLink; 1984. https://doi.org/10.1007/978-3-642-48860-3
- Казакова А.О. Применение метода граничных элементов к численному моделированию кручения стержня // Научные исследования: от теории к практике. 2016. Т. 3. № 9. С. 25-30.
- Chen F. Solution of torsional problems by BEM. WIT Transactions of Modelling and Simulations. 1993;1:1-9.
- Игумнов Л.А. Варианты метода граничных элементов и метода граничных интегральных уравнений в линейной теории упругости // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Механика. 2000. Т. 3. № 2. С. 11-21.
- Temis Y.M., Karaban V.V. Boundary element technique in torsion problems of beams with multiply connected cross-sections. Journal of the Korean Society for Industrial and Applied Mathematics. 2001;5(2):39-51.
- Dumont N.A. Complex-variable, high-precision formulation of the consistent boundary element method for 2D potential and elasticity problems. Engineering Analysis with Boundary Elements. 2023;152:552-574. https://doi.org/ 10.1016/j.enganabound.2023.04.024
- Dumont N.A. The consistent boundary element method for potential and elasticity: Part I - Formulation and convergence theorem. Engineering Analysis with Boundary Elements. 2023;149:127-142. https://doi.org/10.1016/ j.enganabound.2023.01.017
- Gil-Martin L.M., Palomares A., Hernandez-Montes E. Approximate expression of the Prandtl membrane analogy in linear elastic pure torsion of open thin-walled cross sections and regular polygons. International Journal of Solids and Structures. 2021;210-211:109-118. https://doi.org/10.1016/j.ijsolstr.2020.11.020
- Tsiptsis I.N., Sapountzakis E.J. Bars under nonuniform torsion - Application to steel bars, assessment of EC3 guidelines. Engineering Structures. 2014;60:133-147. https://doi.org/10.1016/j.engstruct.2013.12.027
- Sapountzakis E.J. Nonuniform torsion of multi-material composite bars by the boundary element method. Computers & Structures. 2001;79:2805-2816. https://doi.org/10.1016/S0045-7949(01)00147-X
- Lurie A.I. Theory of Elasticity. Springer-Verlag, Berlin, Heidelberg; 2005.
- Friedman Z., Kosmatka J.B. Torsion and flexure of a prismatic isotropic beam using the boundary element method. Computers & Structures. 2000;74(4):479-494. https://doi.org/10.1016/S0045-7949(99)00045-0
- Cruz J.M.F., Mendonça A.V. Torsional analysis of thin-walled beams of open sections by the direct boundary element method. Computers & Structures. 2014;136:90-97. https://doi.org/10.1016/j.compstruc.2014.02.002
Дополнительные файлы










