Experimental studies of the stress-strain state of reinforced concrete structures strengthened by prestressed basalt-composite rebar

Cover Page

Cite item

Abstract

Relevance. In recent years, composite materials have become widespread in the construction of reinforced concrete structures for industrial, civil and transport structures. It is proposed to strengthen the reinforced concrete structures of hydraulic structures with prestressed basalt composite rebar. It took an experimental and theoretical substantiation of technical solutions to strengthen the reinforced concrete structures of hydraulic structures with prestressed basalt composite reinforcement. The aim of the work was to carry out a set of experimental and theoretical studies of the stress-strain state and internal forces in low-reinforced concrete structures of hydraulic structures reinforced with prestressed basalt composite rebar. Methods. Experimental studies of the stress-strain state and internal forces were carried out on the basis of low-reinforced concrete beam-type models with interblock construction joints, harden with prestressed basalt composite reinforcement in the stretched (compressed) zones of the models. Theoretical studies of the stress-strain state and internal forces were carried out on the basis of the theory of reinforced concrete and structural mechanics. Results. As a result of the research carried out on typical low-reinforced concrete structures of hydraulic structures with interblock construction joints, the main stages of the stress-strain state of hydraulic reinforced concrete structures were formulated. Based on the data of experimental and theoretical studies, taking into account the reinforcement with prestressed basalt composite rebar, as well as with prestressed clamps in the shear zone, a method was developed for calculating the strength of low-reinforced hydrotechnical reinforced concrete structures with interblock construction joints.

About the authors

Oleg D. Rubin

Scientific Research Institute of Energy Structures - branch of JSC “Institute Hydroproject”

Author for correspondence.
Email: cskte@mail.ru
SPIN-code: 2720-6627

Director, Scientific Research Institute of Energy Structures - branch of JSC “Institute Hydroproject”, Doctor of Technical Sciences

2 Volokolamskoe Shosse, bldg 1, Moscow, 125080, Russian Federation

Sergey E. Lisichkin

Engineering Center of Structures, Constructions and Technologies in Power Engineering, Ltd

Email: cskte@mail.ru

Deputy General Director, Engineering Center of Structures, Constructions and Technologies in Power Engineering, Ltd., Doctor of Technical Sciences

35 Svobody St, bldg 36, Moscow, 125364, Russian Federation

Oksana V. Zyuzina

B.E. Vedeneev All-Russia Research Institute of Hydraulic Engineering

Email: cskte@mail.ru
SPIN-code: 6769-5035

engineer of the 1st category, postgraduate student

21 Gzhatskaya St, Saint Petersburg, 195220, Russian Federation

References

  1. Bellendir E.N., Rubin O.D., Lisichkin S.E., Zyuzina O.V. Experimental studies of prestress losses of basalt composite reinforcement as part of a concrete element. Power Technology and Engineering. 2020;(7):2–6. (In Russ.)
  2. Rubin O.D., Lisichkin S.E., Zyuzina O.V. The influence of the basalt composite prestressed reinforcement on the operation of low-reinforced, reinforced concrete structures with interblock construction joints. Prirodoobustroystvo. 2020;(5):50–58. (In Russ.)
  3. Zyuzina O.V. Experimental studies of reinforced concrete structures of hydraulic structures strengthened with prestressed transverse reinforcement. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(6):504–512. (In Russ.) http://dx.doi.org/10.22363/1815-5235-2020-16-6-504-512
  4. Becker A.T., Umansky A.M. Application of basalt-plastic reinforcement in the structures of offshore hydroengineering constructions. Proceeding of the VNIIG. 2016;(282):61–75. (In Russ.)
  5. Zavgorodnev A.V., Umansky A.M., Bekker A.T., Borisov E.K. Prospects for the use of composite reinforcement in marine hydraulic engineering. Mining Informational and Analytical Bulletin (Scientific and Technical Journal). 2014; (S4–9):137–148.
  6. Rubin O.D., Umnova R.V. Experimental studies of reinforced concrete structures under the action of bending moments, longitudinal and transverse forces. Collection of Scientific Works of Hydroproject. 1991;(145):83–95. (In Russ.)
  7. Lisichkin S.E., Rubin O.D., Kamnev N.M. Calculation of the strength of a fragment of a turbine block with a scroll casing at the Al Waqda hydro development. Hydrotechnical Construction Consultants Bureau. 1998;29(12):721–727.
  8. Rubin O.D., Lisichkin S.E., Frolov K.E. Experimental investigations of reinforced concrete structures of hydraulic structures with block seams, enhanced by the external reinforcement system. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(3):198–204. (In Russ.) https://doi.org/10.22363/1815-5235-2018-14-3-198-204
  9. Hamed E., Bradford M.A. Flexural time-dependent cracking and post-cracking behaviour of FRP strengthened concrete beams. International Journal of Solids and Structures. 2012;49:1595–1607.
  10. Zhou Y., Gou M., Zhang F., Zhang Sh., Wang D. Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: experimental investigation. Materials and Design. 2013;50:130–139.
  11. Selvachandran P., Anandakumar S., Muthuramu K.L. Deflection behavior of prestressed concrete beam using fiber reinforced polymer (FRP) tendon. The Open Civil Engineering Journal. 2016;(10):40–60.
  12. Zhu H., Yang Y. External prestressing bridge reinforcement technology review. MATEC Web of Conferences. 2015;22:04028.
  13. Pavlović A., Donchev T., Petkova D., Limbachiya M., Almuhaisen R. Pretensioned BFRP reinforced concrete beams: flexural behaviour and estimation of initial prestress losses. MATEC Web of Conferences. 2019;289:09001.
  14. Yang D., Zhang J., Song S., Zhou F., Wang Ch. Experimental investigation on the creep property of carbon fiber reinforced polymer tendons under high stress levels. Materials. Materials (Basel). 2018;11(11):2273. https://doi.org/10.3390/ma11112273
  15. Thorhallsson E.R., Zhelyazov T., Gunnarsson A., Snaebjornsson J.T. Сoncrete beams reinforced with prestressed basalt bars. Concrete-Innovation and Design, fib Symposium (Copenhagen, Denmark, 18–20 May 2015). Copenhagen, 2015.
  16. Gunnarsson A., Thorhallsson E.R., Snaebjornsson J.T. Simulation of experimental research of concrete beams prestressed with BFRP tendons. Proceedings of the XXII Nordic Concrete Research Symposium. Reykjavik, Iceland; 2014. p. 153–156.
  17. Thorhallsson E.R., Jonsson B.S. Test of prestressed concrete beams with BFRP tendons. Workshop Structural Engineering and Composites Laboratory. Reykjavik: Reykjavik University; 2012.
  18. Thorhallsson E.R., Gudmundsson S.H. Test of prestressed basalt FRP concrete beams with and without external stirrups. Proceedings from fib Symposium (Tel-Aviv, April, 2013). Tel-Aviv; 2013. p. 393–396.
  19. Zalesov A.S., Klimov Yu.A. The strength of reinforced concrete structures under the action of transverse forces. Kyiv: Budivel'nyk Publ.; 1989. (In Russ.)
  20. Golyshev A.B., Kolchunov V.I., Smolyago G.A. Experimental studies of reinforced concrete elements under the combined action of a bending moment and shear force. Investigation of Engineering Structures. Moscow; 1980. (In Russ.)
  21. Zalesov A.S., Rubin O.D., Nikolayev V.B. Improvement of the methodology for calculating the strength of reinforced concrete elements on inclined sections. Power Technology and Engineering. 1987;(12):39–42. (In Russ.)

Copyright (c) 2021 Rubin O.D., Lisichkin S.E., Zyuzina O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies