Principle of the overlay deformations in the theory of creep

Cover Page

Cite item

Abstract

The aim of the research is to justify in the non-linear statement the overlay principle of fraction creep deformation, known in the linear creep theory as Bolzmann’s principle of superposition. Methods. In contrast to the traditional approach the material of constructive elements is considered as an union of its links with statistical disturbed strength. The model of structural strength allows the deduction of rheological equations. In loading process so called structural stresses of capable to resist links are considered. Results. The modification Bolzmann’s principle of superposition for fraction creep deformations is proposed. This permits its applicability also under non-linearly dependence of deformations on stresses. In according to concept of the statistical distribution of the strengths of links and linear dependence of determinations on structural stresses the rheological of mechanical statement is reduced. This equation implies the suitable on relation problems the linear integral equation. The relation of structural strength of material with its energy of entirety and with the experimentally known independency of specific to strength deformation on age of concrete is showed. The correct interpretations of certain known mechanical state equations for concrete are represented.

About the authors

Evgeniy A. Larionov

Moscow State University of Civil Engineering

Author for correspondence.
Email: i.v.ivn@mail.ru

Doctor of Science (Technical), Professor of Department of Applied Mathematics

26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation

Vladimir I. Rimshin

Moscow State University of Civil Engineering

Email: i.v.ivn@mail.ru

Doctor of Science (Technical), Professor of Department of Construction; Corresponding Member of the Russian Academy of Architecture and Construction Sciences

26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation

Tatyana V. Zhdanova

Moscow State University of Civil Engineering

Email: i.v.ivn@mail.ru

graduate student of Department of Applied Mathematics

26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation

References

  1. Boltzmann L.E. (1874). Zur Theorie der Elastischen Nachwirkung. Sitzungsberichte Kaiserliche Akademie Wissenhaft Wien Mathematische-Naturwissenhaft, 70, 275–306.
  2. Bondarenko V.M. (1982). Injenernie metodi nelineinoi teorii jelezobetona [Engineering methods of nonlinear theory of reinforced concrete]. Moscow, Stroiizdat Publ. (In Russ.)
  3. Aleksandrovskii S.V., Vasilev P.I. (1976). Eksperimentalnie issledovaniya polzuchesti betona i jelezobetonnih konstrukcii [Experimental study of creep of concrete]. Polzuchest' i usadka betona i zhelezobetonnykh konstruktsii [Creep and shrinkage of concrete and reinforced concrete structures] (pp. 97–152). Moscow, Stroiizdat Publ. (In Russ.)
  4. Sanjarovskii R.S., Manchenko M.M. (2016). Errors in the concrete theory and creepmodern regulations. Structural Mechanics of Engineering Constructions and Buildings, (3), 25–32. http://journals.rudn.ru/structural-mechanics/ article/view/11258. (In Russ.)
  5. Gvozdev A.A. (1972). Zamechanie o nelineinoi teorii polzuchesti betona pri odnoosnom sjatii [Remark on the nonlinear theory of concrete creep under uniaxial compression]. Izv. AN SSSR, MTT, (5), 33. (In Russ.)
  6. Sanjarovskii R.S. (2014). Non-linear hereditary creep theory. Structural Mechanics of Engineering Constructions and Buildings, (1), 63–68. http://journals.rudn.ru/structuralmechanics/article/view/11070. (In Russ.)
  7. Arutyunyan N.H., Kolmanovskii V.B. (1983). Teoriya polzuchesti neodnorodnih tel [Theory of creep of inhomogeneous bodies]. Moscow, Nauka Publ. (In Russ.)
  8. Persoz B. (1957). Le principe de superposition de Bolzman. Cahier Groupe Franzitudeszhicl., 2(1).
  9. Larionov E.A., Bondarenko V.M. (2011). Strains superposition principle when construction elements have structural damages. Structural Mechanics of Engineering Constructions and Buildings, (2). 16–22. http://journals.rudn.ru/ structural-mechanics/article/view/10938. (In Russ.)
  10. Larionov E.A., Larionov A.E. (2015). Nonlinear creep theory. Structural Mechanics and Analysis of Constructions, (2), 58–65. http://stroy-mex.narod.ru/index/2015_ 2/0-185. (In Russ.)
  11. Larionov E.A., Larionov A.E. (2017). The theory of nonlinear creep of materials. Structural Mechanics and Analysis of Constructions, (4), 35–39. http://stroy-mex. narod.ru/index/2017_4/0-23435-39. (In Russ.)
  12. Wiebull W. (1949). A statistical representation of fatigue failures in solids. Trans. Roy. Inst. Techn., (27).
  13. Larionov E.A. (2005). Dlitelnoe silovoe soprotivlenie i bezopasnost soorujenii [Long-term power resistance and safety of structures]: dis.. d-ra tehn. nauk. Moscow. (In Russ.)
  14. Galustov K.Z. (2006). Nelineinaya teoriya polzuchesti betona i raschet jelezobetonnih konstrukcii [Nonlinear theory of concrete creep and calculation of reinforced concrete structures]. Moscow, Fizmatlit Publ. (In Russ.)
  15. Beglov A.D., Sanjarovskii R.S. (2011). Evrostandarti i nelineinaya teoriya jelezobetona [European Standards and nonlinear theory of reinforced concrete]. SPbGASU Publ. (In Russ.)
  16. Ciorino M.A. (2014). Analysis of structural effects of time-dependent behavior of concrete an internationally harmonized format. Plenary Papers of III All-Russian (International) Conference on Concrete and Reinforced Concrete, 7, 338–350.
  17. Sanjarovskii R.S., Ter-Emmanuilyan T.N., Manchenko M.M. (2018). Superposition principle as the fundamental error of the creep theory and standards of the reinforced concrete. Structural Mechanics of Engineering Constructions and Buildings, 14(2), 92–103. http://dx.doi.org/ 10.22363/1815-5235-2018-14-2-92-104. (In Russ.)
  18. Aleksandrovskii S.V., Solomonov V.V. (1972). Zavisimost deformacii polzuchesti betona ot nachalnogo urovnya napryajenii [Dependence of creep deformations of concrete on the initial level of stress]. Mejotraslevie voprosi stroitelstva. Otechestvennii opit: Referativnii sbornik, (6).
  19. Krishan A.L., Narkevich M.Yu., Sagadatov A.I. (2018). Experimental investigation of selection of warm mode for high-performance self-stressing self-compacting concrete. 7th International Symposium on Actual Problems of Computational Simulation in Civil Engineering (APCSCE), Novosibirsk, Russia, Jul. 1–8, 2018.
  20. Varlamov A.A., Rimshin V.I., Tverskoi S.Y. (2018). Security and destruction of technical systems. 18th International Federation of Automatic Control (IFAC) Conference on Technology, Culture and International Stability (TECIS), Baku, Azerbaijan (Sep. 13–15, 2018), 51(30), 808–811.
  21. Varlamov A.A., Rimshin V.I., Tverskoi S.Y. (2018). Planning and management of urban environment using the models of degradation theory. IOP Conference Series: Earth and Environmental Science, 177(1), 012040.
  22. Kuzina E., Cherkas A., Rimshin V. (2018). Technical aspects of using composite materials for strengthening constructions. IOP Conference Series: Materials Science and Engineering, 365, 032053.
  23. Kuzina E., Rimshin V. (2018). Deformation Monitoring of Road Transport Structures and Facilities Using Engineering and Geodetic Techniques. International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport, EMMFT-2017, Advances in Intelligent Systems and Computing, 692, 410–416.
  24. Cherkas A., Rimshin V. (2017). Application of composite reinforcement for modernization of buildings and structures. MATEC Web Conf., 117, 00027.
  25. Erofeev V.T., Zavalishin E.V., Rimshin V.I. (2016). Frame Composites Based On Soluble Glass. Research journal of pharmaceutical biological and chemical sciences, 7(3), 2506–2517.
  26. Krishan A.L., Troshkina E.A., Rimshin V.I. (2016). Load-Bearing Capacity of Short Concrete-Filled Steel Tube Columns of Circular Cross Section. Research journal of pharmaceutical biological and chemical sciences, 7(3), 2518–2529.
  27. Krishan A., Rimshin V., Erofeev V. (2015). The Energy Integrity Resistance to the Destruction of the LongTerm Strength Concrete. Urban Civil Engineering and Municipal Facilities (SPbUCEMF): International Scientific Conference, Saint Petersburg, Russia, Mar. 18–20, 2015.

Copyright (c) 2019 Larionov E.A., Rimshin V.I., Zhdanova T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies