Abstract
The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electron, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD).
In this contribution we will present algorithms which were developed for event reconstruction in the RICH detector. Efficient and fast ring recognition is based on the Hough Transform method which was accelerated considerably compared to a standard implementation. Ring quality selection is done using an Artificial Neural Network. Ellipse fitting algorithm was developed for RICH ring fitting. These reconstruction methods allow for a high purity and efficiency of reconstructed electron rings.