Parameterizing qudit states
- Authors: Khvedelidze A.1,2,3, Mladenov D.4, Torosyan A.3
-
Affiliations:
- A. Razmadze Mathematical Institute Iv. Javakhishvili Tbilisi State University
- Institute of Quantum Physics and Engineering Technologies Georgian Technical University
- Meshcheryakov Laboratory of Information Technologies Joint Institute for Nuclear Research
- Sofia University “St. Kliment Ohridski”
- Issue: Vol 29, No 4 (2021)
- Pages: 361-386
- Section: Articles
- URL: https://journals.rudn.ru/miph/article/view/29429
- DOI: https://doi.org/10.22363/2658-4670-2021-29-4-361-386
Cite item
Full Text
Abstract
Quantum systems with a finite number of states at all times have been a primary element of many physical models in nuclear and elementary particle physics, as well as in condensed matter physics. Today, however, due to a practical demand in the area of developing quantum technologies, a whole set of novel tasks for improving our understanding of the structure of finite-dimensional quantum systems has appeared. In the present article we will concentrate on one aspect of such studies related to the problem of explicit parameterization of state space of an -level quantum system. More precisely, we will discuss the problem of a practical description of the unitary -invariant counterpart of the -level state space , i.e., the unitary orbit space . It will be demonstrated that the combination of well-known methods of the polynomial invariant theory and convex geometry provides useful parameterization for the elements of . To illustrate the general situation, a detailed description of for low-level systems: qubit (), qutrit (), quatrit () - will be given.
Full Text
1. Introduction Quantum mechanics is a unitary invariant probabilistic theory of finitedimensional systems. Both basic features, the invariance and the randomness, strongly impose on the mathematical structure associated with the state © KhvedelidzeA., MladenovD., TorosyanA., 2021 This work is licensed under a Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ space
About the authors
Arsen Khvedelidze
A. Razmadze Mathematical Institute Iv. Javakhishvili Tbilisi State University; Institute of Quantum Physics and Engineering Technologies Georgian Technical University; Meshcheryakov Laboratory of Information Technologies Joint Institute for Nuclear Research
Author for correspondence.
Email: akhved@jinr.ru
ORCID iD: 0000-0002-5953-0140
PhD in physics and mathematics, Head of Group of Algebraic and Quantum Computations of Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research; Director of Institute of Quantum Physics and Engineering Technologies, Georgian Technical University; Researcher in A. Razmadze Mathematical Institute, Iv. Javakhishvili Tbilisi State University
1, Ilia Chavchavadze Avenue, Tbilisi, 0179, Georgia; 77, Kostava St., Tbilisi, 0175, Georgia; 6, Joliot-Curie St., Dubna, Moscow Region, 141980, Russian FederationDimitar Mladenov
Sofia University “St. Kliment Ohridski”
Email: mladim2002@gmail.com
ORCID iD: 0000-0003-3817-5976
PhD in Physics and Mathematics, Associate professor of department of Theoretical Physics of Faculty of Physics
15, Tsar Osvoboditel Boulevard, Sofia, 1164, BulgariaAstghik Torosyan
Meshcheryakov Laboratory of Information Technologies Joint Institute for Nuclear Research
Email: astghik@jinr.ru
ORCID iD: 0000-0002-4514-2884
Junior Researcher in Meshcheryakov Laboratory of Information Technologies
6, Joliot-Curie St., Dubna, Moscow Region, 141980, Russian FederationReferences
- E. P. Wigner, Group theory. New York: Academic Press, 1959.
- R. V. Kadison, “Transformation of states in operator theory and dynamics,” in Topology, ser. 2. 1965, vol. 3, pp. 177–198.
- W. Hunziker, “A note on symmetry operations in quantum mechanics,” Helvetica Physica Acta, vol. 45, pp. 233–236, 1972. doi: 10.5169/seals114380.
- V. Gerdt, A. Khvedelidze, and Y. Palii, “On the ring of local polynomial invariants for a pair of entangled qubits,” Journal of Mathematical Sciences, vol. 168, pp. 368–378, 2010. doi: 10.1007/s10958-010-9988-8.
- V. Gerdt, A. Khvedelidze, and Y. Palii, “Constraints on SU(2) × SU(2) invariant polynomials for a pair of entangled qubits,” Adernaa fizika, vol. 74, pp. 919–925, 2011.
- V. Gerdt, D. Mladenov, A. Khvedelidze, and Y. Palii, “SU(6) Casimir invariants and SU(2)xSU(3) scalars for a mixed qubit-qutrit state,” Journal of Mathematical Sciences, vol. 179, pp. 690–701, 2011. doi: 10.1007/s10958-011-0619-9.
- V. Gerdt, A. Khvedelidze, and Y. Palii, “Constructing the SU(2) x U(1) orbit space for qutrit mixed states,” Journal of Mathematical Sciences, vol. 209, pp. 878–889, 2015. doi: 10.1007/s10958-015-2535-x.
- V. Gerdt, A. Khvedelidze, and Y. Palii, “On the ring of local unitary invariants for mixed X-states of two qubits,” Journal of Mathematical Sciences, vol. 224, pp. 238–249, 2017. doi: 10.1007/s10958-017-3409-1.
- V. L. Popov and E. B. Vinberg, “Invariant theory,” in Encylopaedia of Mathematical Sciences, ser. Algebraic Geometry IV, vol. 55, Berlin: Springer-Verlag, 1994, pp. 123–273.
- M. Adelman, J. V. Corbett, and C. A. Hurst, “The geometry of state space,” Foundations of Physics, vol. 23, pp. 211–223, 1993. DOI: 10. 1007/BF01883625.
- M. Kuś and K. Zyczkowski, “Geometry of entangled states,”̇ Physical Review A, vol. 63, p. 032307, 2001. doi: 10.1103/PhysRevA.63.032307.
- J. Grabowski, M. Kuś, and G. Marmo, “Geometry of quantum systems: density states and entanglement,” Journal of Physics A: Mathematical and General, vol. 38, no. 7, pp. 10217–44, 2005. doi: 10.1088/03054470/38/47/011.
- I. Bengtsson and K. Zyczkowski,̇ Geometry of quantum states: an introduction to quantum entanglement. Cambridge: Cambridge University Press, 2006. doi: 10.1017/CBO9780511535048.
- J. von Neumann, “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik,” German, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 245–272, 1927.
- L. D. Landau, “Das Dampfungsproblem in der Wellenmechanik,” German, Z. Physik, vol. 45, pp. 430–441, 1927.
- M. Abud and G. Sartori, “The geometry of spontaneous symmetry breaking,” Annals of Physics, vol. 150, no. 2, pp. 307–372, 1983. doi: 10.1016/0003-4916(83)90017-9.
- C. Procesi and G. Schwarz, “The geometry of orbit spaces and gauge symmetry breaking in supersymmetric gauge theories,” Physics Letters B, vol. 161, pp. 117–121, 1985. doi: 10.1016/0370-2693(85)90620-3.
- C. Procesi and G. Schwarz, “Inequalities defining orbit spaces,” Inventiones mathematicae, vol. 81, pp. 539–554, 1985. DOI: 10.1007/ BF01388587.
- D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, 3rd ed. Springer, 2007.
- F. Bloch, “Nuclear induction,” Physical Review, vol. 70, no. 7, pp. 464– 474, 1946. doi: 10.1103/PhysRev.70.460.
- U. Fano, “Description of states in quantum mechanics by density matrix and operator techniques,” Reviews of Modern Physics, vol. 29, pp. 74– 93, 1957. doi: 10.1103/RevModPhys.29.74.
- S. M. Deen, P. K. Kabir, and G. Karl, “Positivity constraints on density matrices,” Physical Review D, vol. 4, p. 1662, 1971. DOI: 10.1103/ PhysRevD.4.1662.
- F. J. Bloore, “Geometrical description of the convex sets of states for spin-1/2 and spin-1,” Journal of Physics A: Mathematical and General, vol. 9, no. 12, pp. 2059–67, 1976. doi: 10.1088/0305-4470/9/12/011.
- F. T. Hioe and J. H. Eberly, “N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics,” Physical Review Letters, vol. 47, p. 838, 1981. doi: 10.1103/PhysRevLett.47. 838.
- P. Dita, “Finite-level systems, Hermitian operators, isometries and novel parametrization of Stiefel and Grassmann manifolds,” Journal of Physics A: Mathematical and General, vol. 38, no. 12, pp. 2657–68, 2005. doi: 10.1088/0305-4470/38/12/008.
- S. Akhtarshenas, “Coset parameterization of density matrices,” Optics and Spectroscopy, vol. 103, pp. 411–415, 2007. DOI: 10.1134/ S0030400X0709010X.
- E. Brüning, D. Chruściński, and F. Petruccione, “Parametrizing density matrices for composite quantum systems,” Open Systems & Information Dynamics, vol. 15, no. 4, pp. 397–408, 2008. DOI: 10.1142/ S1230161208000274.
- C. Spengler, M. Huber, and B. Hiesmayr, “A composite parameterization of unitary groups, density matrices and subspaces,” Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 38, p. 385306, 2010. doi: 10.1088/1751-8113/43/38/385306.
- E. Brüning, H. Mäkelä, A. Messina, and F. Petruccione, “Parametrizations of density matrices,” Journal of Modern Optics, vol. 59, no. 1, pp. 1–20, 2012. doi: 10.1080/09500340.2011.632097.
- C. Eltschka, M. Huber, S. Morelli, and J. Siewert, “The shape of higherdimensional state space: Bloch-ball analog for a qutrit,” Quantum, vol. 5, p. 485, 2021. doi: 10.22331/q-2021-06-29-485.
- L. Michel and L. A. Radicati, “The geometry of the octet,” Ann. Inst. Henri Poincare, Section A, vol. 18, no. 3, pp. 185–214, 1973.
- A. J. MacFarline, A. Sudbery, and P. H. Weisz, “On Gell-Mann’s matrices, d- and f-tensors, octets, and parametrizations of SU(3),” Communications in Mathematical Physics, vol. 11, pp. 77–90, 1968. doi: 10.1007/BF01654302.
- D. Kusnezov, “Exact matrix expansions for group elements of SU(N),” Journal of Mathematical Physics, vol. 36, pp. 898–906, 1995. DOI: 10. 1063/1.531165.
- T. S. Kortryk, “Matrix exponentsial, SU(N) group elements, and real polynomial roots,” Journal of Mathematical Physics, vol. 57, no. 2, p. 021701, 2016. doi: 10.1063/1.4938418.
- V. Abgaryan and A. Khvedelidze, “On families of Wigner functions for N-level quantum systems,” Symmetry, vol. 13, no. 6, p. 1013, 2021. doi: 10.3390/sym13061013.
- V. Abgaryan, A. Khvedelidze, and A. Torosyan, “The global indicator of classicality of an arbitrary N-level quantum system,” Journal of Mathematical Sciences, vol. 251, pp. 301–314, 2020. DOI: 10.1007/ s10958-020-05092-6.
- V. Abgaryan, A. Khvedelidze, and A. Torosyan, “Kenfack–Zyczkowski̇ indicator of nonclassicality for two non-equivalent representations of Wigner function of qutrit,” Physics Letters A, vol. 412, no. 7, p. 127591, 2021. doi: 10.1016/j.physleta.2021.127591.