Asymptotic method for constructing a model of adiabatic guided modes of smoothly irregular integrated optical waveguides

Cover Page

Cite item


The paper considers a class of smoothly irregular integrated optical multilayer waveguides, whose properties determine the characteristic features of guided propagation of monochromatic polarized light. An asymptotic approach to the description of such electromagnetic radiation is proposed, in which the solutions of Maxwell’s equations are expressed in terms of the solutions of a system of four ordinary differential equations and two algebraic equations for six components of the electromagnetic field in the zero approximation. The gradient of the phase front of the adiabatic guided mode satisfies the eikonal equation with respect to the effective refractive index of the waveguide for the given mode.The multilayer structure of waveguides allows one more stage of reducing the model to a homogeneous system of linear algebraic equations, the nontrivial solvability condition of which specifies the relationship between the gradient of the radiation phase front and the gradients of interfaces between thin homogeneous layers.In the final part of the work, eigenvalue and eigenvector problems (differential and algebraic), describing adiabatic guided modes are formulated. The formulation of the problem of describing the single-mode propagation of adiabatic guided modes is also given, emphasizing the adiabatic nature of the described approximate solution of Maxwell’s equations.

Full Text

Introduction Fundamental results in the theory of regular waveguides were obtained for closed (metallic) waveguides by A. N. Tikhonov and A. A. Samarskii [1], and for open (dielectric) waveguides by A. G. Sveshnikov [2] and V. V. Shevchenko [3]. Among the irregular waveguides, one can distinguish transversely irregular and longitudinally irregular waveguides. For transversely irregular waveguides, the equations and the corresponding solutions allow the separation of variables [4]. © Sevastianov A. L., 2020 This work is licensed under a Creative Commons Attribution 4.0 International License Here the incomplete Galerkin method developed by A. G. Sveshnikov [2], [5], [6] received the greatest recognition. For closed longitudinally irregular waveguides, B. Z. Katsenelenbaum de- veloped the method of cross sections [7], which was generalized for open longitudinally irregular waveguides by V. V. Shevchenko [8]. These models do not describe depolarization and hybridization of guided modes in irregular sec- tions of waveguides. A. A. Egorov, L. A. Sevastyanov and A. L. Sevastyanov developed the foundations of the theory of smoothly irregular 3D dielectric and, in particular, integrated optical waveguides [9], [10], which was success- fully applied to a number of three-dimensional integrated optical waveguides and smoothly irregular 3D waveguide devices based on them [11]-[13]. The mathematical basis of the model of adiabatic guided modes (AGMs) is the as- ymptotic method and the method of coupled modes. The asymptotic method for solving a boundary value problem for a system of differential equations with respect to a small parameter


About the authors

Anton L. Sevastianov

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.

Candidate of Physical and Mathematical Sciences, assistant professor of Department of Applied Probability and Informatics

6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation


  1. A. A. Samarskii and A. N. Tikhonov, “Representation of the field in a waveguide as the sum of the TE and TM fields [O predstavlenii polya v volnovode v vide summy polej TE i TM],” Zhurnal tekhnicheskoy fiziki, vol. 18, no. 7, pp. 959-970, 1948, in Russian.
  2. A. G. Sveshnikov, “A substantiation of a method for computing the propagation of electromagnetic oscillations in irregular waveguides,” USSR Computational Mathematics and Mathematical Physics, vol. 3, no. 2, pp. 413-429, 1963. doi: 10.1016/0041-5553(63)90027-2.
  3. V. V. Shevchenko, “Spectral decomposition in eigenand associated functions of a nonselfadjoint problem of Sturm-Liouville type on the entire axis [O spektral’nom razlozhenii po sobstvennym i prisoedinennym funkciyam odnoj nesamosopryazhennoj zadachi tipa SHturma-Liuvillya na vsej osi],” Differ. Uravn., vol. 15, no. 11, pp. 2004-2020, 1979, in Russian.
  4. L. N. Deryugin, A. N. Marchuk, and V. E. Sotin, “Properties of planar asymmetrical dielectric waveguides on a substrate of dielectric [Svojstva planarnogo asimmetrichnogo dielektricheskogo volnovoda na podlozhke iz dielektrika],” Izv. Vyssh. Uchebn. Zaved., Ser. Radioelektron., vol. 10, no. 2, pp. 134-141, 1967, in Russian.
  5. A. G. Sveshnikov, “The incomplete Galerkin method [Nepolnyj metod Galerkina],” Dokl. Akad. Nauk SSSR, vol. 236, no. 5, pp. 1076-1079, 1977, in Russian.
  6. A. A. Bykov, A. G. Sveshnikov, and M. K. Trubetskov, “Reduced Galerkin’s method application to calculations of eigenwaves in open waveguides [Primenenie nepolnogo metoda Galerkina dlya rascheta sobstvennyh voln otkrytyh volnovodov],” Matem. Mod., vol. 3, no. 7, pp. 111-123, 1991, in Russian.
  7. B. Z. Katsenelenbaum, Theory of Irregular Waveguides with Slowly Varying Parameters [Teoriya neregulyarnyh volnovodov s medlenno menyayushchimisya parametrami]. Moscow: Akad. Nauk SSSR, 1961, in Russian.
  8. V. V. Shevchenko, Continuous Transitions in Open Waveguides [Plavnye perekhody v otkrytyh volnovodah]. Moscow: Nauka, 1969, in Russian.
  9. L. A. Sevastianov and A. A. Egorov, “Theoretical analysis of the waveguide propagation of electromagnetic waves in dielectric smoothly-irregular integrated structures,” Optics and Spectroscopy, vol. 105, no. 4, pp. 576-584, 2008. doi: 10.1134/S0030400X08100123.
  10. A. A. Egorov and L. A. Sevastianov, “Structure of modes of a smoothly irregular integrated optical four-layer three-dimensional waveguide,” Quantum Electronics, vol. 39, no. 6, pp. 566-574, 2009. doi: 10.1070/QE2009v039n06ABEH013966.
  11. A. A. Egorov, K. P. Lovetskiy, A. L. Sevastianov, and L. A. Sevastianov, “Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation,” Quantum Electronics, vol. 40, no. 9, pp. 830-836, 2010. doi: 10.1070/QE2010V040N09ABEH014332.
  12. A. A. Egorov, A. L. Sevast’yanov, and L. A. Sevast’yanov, “Stable computer modeling of thin-film generalized waveguide Luneburg lens,” Quantum Electronics, vol. 44, no. 2, pp. 167-173, 2014. DOI: 10.1070/ QE2014v044n02ABEH015303.
  13. A. A. Egorov, A. L. Sevastyanov, E. A. Ayryan, and L. A. Sevastyanov, “Stable computer modeling of thin-film generalized waveguide Luneburg lens [Ustojchivoe komp’yuternoe modelirovanie tonkoplenochnoj obobshchennoj volnovodnoj linzy Lyuneberga],” Matem. Mod., vol. 26, no. 11, pp. 37-44, 2014, in Russian.
  14. A. S. Il’inskii, V. V. Kravtsov, and A. G. Sveshnikov, Mathematical Models of Electrodynamics [Matematicheskie modeli elektrodinamiki]. Moscow: Vyssh. Shkola, 1991, in Russian.
  15. M. J. Adams, An Introduction to Optical Waveguides. New York: Wiley, 1981.
  16. T. Tamir, “Guided-Wave Optoelectronics,” in Integrated Optics, T. Tamir, Ed. Berlin: Springer-Verlag, 1990.
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory. New York: Chapman and Hall, 1983.
  18. D. Markuze, Theory of Dielectric Optical Waveguides. New York: Academic Press, 1974.
  19. M. Barnoski, Introduction to Integrated Optics. New York: Plenum Press, 1974.
  20. A. I. Neishtadt, “On the accuracy of conservation of the adiabatic invariant,” Journal of Applied Mathematics and Mechanics, vol. 45, no. 1, pp. 58-63, 1981. doi: 10.1016/0021-8928(81)90010-1.
  21. I. V. Gorelyshev and A. I. Neishtadt, “On the adiabatic perturbation theory for systems with impacts,” Journal of Applied Mathematics and Mechanics, vol. 70, no. 1, pp. 4-17, 2006. doi: 10.1016/j.jappmathmech.2006.03.015.
  22. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in ShortWavelength Diffraction Theory, Alpha Science Series on Wave Phenomena. Harrow, UK: Alpha Science International, 2009.
  23. Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media. Berlin: Springer-Verlag, 1990.
  24. B. Z. Katsenelenbaum, “Irregular waveguides with slowly varying parameters [Neregulyarnye volnovody s medlenno menyayushchimisya parametrami],” Doklady Akademii Nauk SSSR, vol. 102, no. 4, p. 711, 1955, in Russian.
  25. B. Z. Katsenelenbaum, “A contribution to the general theory of nonregular wave guides [K obshchej teorii neregulyarnyh volnovodov],” Dokl. Akad. Nauk SSSR, vol. 116, no. 2, pp. 203-206, 1957, in Russian.
  26. A. I. Neishtadt, “Propagation of rays in smoothly irregular waveguides and perturbation theory of Hamiltonian systems [Rasprostranenie luchej v plavno neregulyarnyh volnovodah i teoriya vozmushchenij gamil’tonovyh sistem],” Izv. vuzov. Radiofizika, vol. 25, no. 2, pp. 218- 226, 1982, in Russian.
  27. A. L. Sevastyanov, “Single-mode waveguide spread of light in a smooth irregular integral optical waveguide [Komp’yuternoe modelirovanie polej napravlyaemyh mod tonkoplenochnoj obobshchennoj volnovodnoj linzy Lyuneberga],” in Russian, Ph.D. dissertation, Peoples’ Friendship University of Russia, Moscow, 2010.
  28. S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction, and Confinement of Optical Radiation. Orlando, FL: Academic Press, 1986.
  29. M. Kline and I. W. Kay, Electromagnenic Theory and Geometricak Optics. New York: Wiley (Inter-science), 1965.
  30. M. V. Fedoryuk, “A justification of the method of transverse sections for an acoustic wave guide with nonhomogeneous content,” Mathematical Physics, vol. 13, no. 1, pp. 162-173, 1973. doi: 10.1016/0041-5553(74) 90012-3.

Copyright (c) 2020 Sevastianov A.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies