On the Reduction of Maxwell’s Equations in Waveguidesto the System of Coupled Helmholtz Equations

Cover Page

Cite item

Abstract

The investigation of the electromagnetic field in a regular homogeneous waveguide reducesto the investigation of two independent boundary value problems for the Helmholtz equation,corresponding to TE- and TM-modes. In the case of an inhomogeneous waveguide TE- andTM-modes are connected to each other, which in numerical experiments can not always be fullytaken into account. In this paper we show how to rewrite the Helmholtz equations in vectorform to express this relationship explicitly.In the article the cylindrical waveguide with perfectly conducting walls is considered, but wedon’t make any assumptions about filling of waveguide. The introduced approach is based ontwo-dimensional analogue of the theorem known in the theory of elastic bodies as the Helmholtzdecomposition. On its basis, we introduce four potentials, instead of two potentials, usuallyused in the theory of hollow waveguides. It is proved that any solution of Maxwell’s equationsin a waveguide that satisfies the boundary conditions of ideal conductivity on the boundariesof a waveguide can be represented with the help of these potentials. The system of Maxwell’sequations is written with respect to these potentials and it is shown that this system has theform of two independent Helmholtz equations in the case of a hollow waveguide.

About the authors

M D Malykh

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: malykhmd@yandex.ru
6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

A L Sevastianov

Peoples’ Friendship University of Russia (RUDN University)

Email: sevastianov_al@rudn.university
6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

L A Sevastianov

Peoples’ Friendship University of Russia (RUDN University)

Email: sevastianov_la@rudn.university
6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

A A Tyutyunnik

Peoples’ Friendship University of Russia (RUDN University)

Email: tyutyunnik_aa@rudn.university
6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

References

  1. A. A. Samarskiy, A. N. Tikhonov, On the Representation of a Field in a Waveguide in the Form of a Sum of Fields TE and TM, Zhurnal tekhnicheskoy fiziki 18 (7) (1948) 959–970, in Russian.
  2. A. G. Sveshnikov, The Basis for a Method of Calculating Irregular Waveguides, USSR Computational Mathematics and Mathematical Physics 3 (1) (1963) 219–232.
  3. A. G. Sveshnikov, A Substantiation of a Method for Computing the Propagation of Electromagnetic Oscillations in Irregular Waveguides, USSR Computational Mathematics and Mathematical Physics 3 (2) (1963) 413–429.
  4. A. G. Sveshnikov, Incomplete Galerkin Method, DAN USSR 236 (5) (1977) 1076–1079, in Russian.
  5. A. S. Il’inskij, V. V. Kravcov, A. G. Sveshnikov, Mathematical Models of Electrodynamics, Vysshaja shkola, Moscow, 1991, in Russian.
  6. I. E. Mogilevskii, A. G. Sveshnikov, Mathematical Problems of the Theory of Diffraction, Faculty of Physics MSU, Moscow, 2010, in Russian.
  7. W. C. Chew, Lectures on Theory of Microwave and Optical Waveguides (2012). URL http://wcchew.ece.illinois.edu/chew/course/tgwAll20121211.pdf
  8. A. N. Bogolyubov, D. V. Minaev, Synthesis of a Plane Waveguide Transition, Moscow University Physics Bulletin 48 (2) (1993) 63–64.
  9. A. G. Sveshnikov, A. N. Bogolyubov, D. V. Minaev, Calculation of the Matching Waveguide Transition between Two Coaxial Waveguides of the Oval Shape, Moscow University Physics Bulletin (4) (1997) 51–54, in Russian.
  10. A. N. Bogolyubov, A. A. Budkarev, Studying the Waveguide Transition by the Finite Element Method, Moscow University Physics Bulletin 58 (4) (2003) 6–10.
  11. A. L. Delitsyn, Finite-Element Methods for Junction Problems for Coaxial and Radial Waveguides, Moscow University Physics Bulletin 71 (4) (2016) 368–374.
  12. A. N. Bogolyubov, T. V. Eygakina, Application of Variational-Difference Methods to Dielectric Waveguide Calculations, Moscow University Physics Bulletin 46 (2) (1991) 7–13.
  13. A. N. Bogolyubov, T. V. Eygakina, Calculation of Dielectric Waveguides with a Complicated Cross-Sectional Shape by the Variational-Difference Method, Moscow University Physics Bulletin 34 (3) (1992) 72–74, in Russian.
  14. A. N. Bogolyubov, A. L. Delitsyn, Calculation of Dielectric Waveguides by the Finite Element Method, Eliminating the Appearance of Unphysical Solutions, Moscow University Physics Bulletin (1) (1996) 9–13, in Russian.
  15. A. V. Lavrenova, Calculation of the Waveguide Heterogeneity by the Finite Element Method, Moscow University Physics Bulletin (1) (2004) 22–24, in Russian.
  16. A. N. Bogolyubov, A. L. Delitsyn, A. V. Lavrenova, Finite Element Method in the Problem of Waveguide Diffraction, Elektromagnitnyye volny i elektronnyye sistemy (8) (2004) 22–25, in Russian.
  17. A. N. Bogolyubov, A. L. Delitsyn, A. V. Lavrenova, Application of the Finite Element Method in Waveguide Diffraction Problems, Radiotekhnika (12) (2004) 20–26, in Russian.
  18. A. N. Bogolyubov, A. V. Lavrenova, Mathematical Modeling of Diffraction on an Inhomogeneity in a Waveguide Using Mixed Finite Elements, Mathematical Models and Computer Simulations 1 (1) (2009) 131–137.
  19. A. N. Bogolyubov, A. L. Delitsyn, A. G. Sveshnikov, On the Completeness of Root Vectors of a Radio Waveguide, Doklady Mathematics (3) (1999) 453–455.
  20. A. N. Bogolyubov, A. L. Delicyn, A. G. Sveshnikov, On the Problem of the Excitation of a Waveguide with an Inhomogeneous Medium, Computational Mathematics and Mathematical Physics 38 (11) (1999) 1815–1823.
  21. A. N. Bogolyubov, A. L. Delicyn, M. D. Malykh, On the Root Vectors of a Cylindrical Waveguide, Computational Mathematics and Mathematical Physics 41 (1) (2001) 121–124.
  22. A. L. Delitsyn, On the Completeness of the System of Eigenvectors of Electromagnetic Waveguides, Computational Mathematics and Mathematical Physics (10) (2011) 1771– 1776.
  23. A. N. Bogolyubov, A. L. Delitsyn, A. G. Sveshnikov, Solvability Conditions for the Radio Waveguide Excitation Problem, Doklady Mathematics (1) (2000) 126–129.
  24. A. N. Bogolyubov, A. L. Delicyn, A. G. Sveshnikov, On the Problem of Exciting a Waveguide with an Inhomogeneous Medium, Computational Mathematics and Mathematical Physic 39 (11) (1999) 1794–1813.
  25. M. D. Malykh, On the Method of Raising the Lower Boundary of a Continuous Spectrum in Problems of the Spectral Theory of Waveguiding Systems, Moscow University Physics Bulletin (4) (2006) 3–5, in Russian.
  26. A. L. Delicyn, On the Formulation of Boundary Value Problems for the System of Maxwell Equations in a Cylinder and Their Solvability, Izvestiya Rossiyskoy akademii nauk. Seriya matematicheskaya 71 (3) (2007) 61–112, in Russian.
  27. A. N. Bogolyubov, A. I. Erokhin, I. E. Mogilevsky, Vector Waveguide Model with Incoming Edges, Zhurnal radioelektroniki (electronic journal) (2), in Russian.
  28. A. N. Bogolyubov, A. I. Erokhin, I. E. Mogilevskii, Mathematical simulation of an irregular waveguide with reentering edges, Computational Mathematics and Mathematical Physics (6) (2012) 932–936.
  29. A. I. Erokhin, Application of Projective Methods to Calculation the Waveguide and Resonant Structures with Features, Vychislitel’nye metody i programmirovanie (1) (2012) 192–196, in Russian.
  30. M. Ju. Zhukov, E. V. Shirjaeva, Usege of the FEA FreeFem ++ in problems of hydrodynamics, electrophoresis and biology, Southern Federal University, Rostov-on- Don, 2008, in Russian.
  31. K. Zhang, D. Li, Electromagnetic Theory for Microwaves and Optoelectronics. 2nd ed., Springer, Berlin, 2008.
  32. M. D. Malykh, L. A. Sevastianov, A. A. Tiutiunnik, N. E. Nikolaev, On the Representation of Electromagnetic Fields in Closed Waveguides Using Four Scalar Potentials, Journal of Electromagnetic Waves and Applications (2017) 1–13doi: 10.1080/09205071.2017.1409137.
  33. J. Love, Theory of Elasticity, GTTI, 1939, in Russian.
  34. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer Verlag, Berlin-Heidelberg-New York, 1985.
  35. G. Hellwig, Differential Operators of Mathematical Physics, Addison-Wesley, Reading, MA, 1967.

Copyright (c) 2018 Malykh M.D., Sevastianov A.L., Sevastianov L.A., Tyutyunnik A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies