Киллинговый потенциал циркулирующих нейтрофилов при опухолях почки

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. В настоящее время значительный интерес представляет изучение роли нейтрофилов в развитии рака почки. Исследование иммунопатогенеза рака почки определяется необходимостью использования комбинированного лечения с применением иммунотерапии. Известна способность нейтрофилов проявлять как про- так и противоопухолевые свой­ства, которые связаны с уровнем поверхностных рецепторов CD11b, CD16, CD63, CD66b и киллинговой активностью нейтрофилов. Цель — оценить киллинговый потенциал циркулирующих нейтрофилов при опухолях почки. Материалы и методы. Объектом исследования явились циркулирующие нейтрофилы пациентов c верифицированным раком почки (n = 74), пациентов с доброкачественными новообразованиями почки (n = 18) и условно здоровых доноров (n = 22). Исследование фенотипа выделенных нейтрофилов проводили методом проточной цитометрии. Подсчет внеклеточных нейтрофильных ловушек проводили по методу Долгушина И.И. Результаты и обсуждение. Анализ процента внеклеточных нейтрофильных ловушек показал увеличение их количества в группах пациентов с раком почки, как I–II, так и III–IV стадий относительно группы контроля и группы пациентов с доброкачественными новообразованиями почки. Было обнаружено повышение индекса нейтрофильных ловушек в группах пациентов с раком почки I–II и III–IV стадий относительно контрольной группы и группы пациентов с доброкачественными новообразованиями почки. При оценке фагоцитарной активности и индекса фагоцитарной активности было обнаружено значимое увеличение данных показателей в группах пациентов с раком почки относительно контрольной группы и группы пациентов с доброкачественными новообразованиями почки. Обнаружена корреляционная связь между процентом внеклеточных нейтрофильных ловушек (r = 0,438, p = 0,001), фагоцитарной активностью (r = 0,431, р = 0,001) и индексом фагоцитарной активности (r = 0,507, р = 0,001) нейтрофилов со стадией рака почки. Установлено значимое повышение процента нейтрофилов, экспрессирующих рецепторы CD66b как на начальных, так и на распространенных стадиях рака почки относительно группы с доброкачественными новообразованиями почки и группы контроля. В мультивариантной регрессии Кокса выявлено возрастание риска возникновения рака почки при повышении экспрессии CD66b, индекса внеклеточных нейтрофильных ловушек, фагоцитарной активности и индекса фагоцитарной активности циркулирующих нейтрофилов (R2 = 0,728, χ² = 58,1, р = 0,001). Для дифференциальной диагностики между доброкачественными новообразованиями почки и раком почки статистическую значимость демонстрировали совместно процент CD66b+ нейтрофилов, индекс внеклеточных нейтрофильных ловушек, фагоцитарной активности нейтрофилов и индекса фагоцитарной активности. Площадь под кривой (AUC) модели составила 0,983, и рак почки мог быть диагностирован с вероятностью 94,3% (Spec. = 0,889, Sens. = 0,962). Выводы. Таким образом, увеличение CD66b+ нейтрофилов и активация высвобождения внеклеточных ловушек свидетельствует о повышении киллинговой активности нейтрофилов при раке почки. Одновременное определение количества CD66b+ нейтрофилов, индекса внеклеточных нейтрофильных ловушек, фагоцитарной активности и индекса фагоцитарной активности может использоваться для дифференциальной диагностики между доброкачественными новообразованиями почки и рака почки.

Полный текст

Introduction

Clear cell renal cell carcinoma (RC) is the most common type of renal cancer (about 70% of cases). The leading role in its treatment belongs to the surgical method. However, already at the time of diagnosis, a significant proportion of patients are diagnosed with disseminated RC, which determines the need for combined treatment with immunotherapy [1]. Currently, the number of studies aimed at studying the role of neutrophils (Nph) in RC is growing [2, 3]. The ability of Nph to exhibit both pro- and antitumor properties has been shown [4].

The level of expression of surface receptors determines the functional activity of Nph. Thus, CD11b, CD16, CD63 and CD66b allow identifying mature and activated Nph [5]. Thus, CD11b mediates chemotaxis of Nph to the site of inflammation, adhesion, phagocytosis, respiratory burst and degranulation [6]. CD16 (FcγRIII) is a marker of Nph capable of cytotoxic action, degranulation, oxygen burst and proliferation [6]. CD66b receptors are expressed by mature, activated and degranulating Nph [7]. CD11b+CD16+ is a subpopulation of mature Nph capable of phagocytosis and degranulation [8]. The receptors of maturity, activation, degranulation and cytotoxicity CD16, CD63, CD66b determine the phenotype of neutrophils, which have a high capacity to form extracellular neutrophil traps (NETs) [9].

It is known that NETs play an important role in the occurrence and development of pathological processes [10, 11]. While the positive effects of NETs in the fight against pathogens have already been largely described, their negative role has also become known, including in carcinogenesis. NETs can have potential antitumor effects due to the direct destruction of cancer cells or activation of the immune system, releasing a number of cytotoxic substances that destroy tumor cells, block tumor growth and the formation of metastases [12, 13]. However, many studies indicate that NETs, ensuring the spread of tumor cells to organs and tissues, are capable of exerting a protumorogenic effect and play an important role in the progression and metastasis of tumors, including in RC [14]. The phenotype of Nph is associated with the tumor process and stage, and can determine the growth and progression of RC [9]. However, this question has not been fully studied.

The aim of this work was to evaluate the killing potential of circulating Nph in renal tumors.

Materials and methods

The object of the study were circulating Nph of patients with verified RC (Table 1), conditionally healthy donors (control group) and patients with renal benign neoplasms (RBN) (oncocytoma, angiolipoma, renal cyst) (Table 1). Nph were isolated from leukocyte suspension on a double density gradient of Ficoll-­Verografin solutions. The isolated Nph were brought to a concentration of 5Н106 cells/ml. The purity of the Nph fraction was 92–94%. The viability of Nph in the test with 0.5% trypan blue was 95%. The phenotype of the isolated Nph was studied by flow cytometry (BioSino, China) using monoclonal antibodies (Sony Biotechnology, USA) labeled with FITC (fluoresceinisothiocyanate), PE (phycoerythrin), PC5 (phycoerythrin-­cyanin 5): CD11b, CD16, CD63, CD66b, CD95. NETs were counted according to the method of Dolgushin I.I. et al. (2010). The number traps (NT,%) of neutrophil was determined — the number of neutrophil traps containing yeast activator cells from 100 counted network-like structures and the neutrophil trap index (TI, c. u.) — the number of yeast activators in 100 counted traps per 1 structure, phagocytic activity (PA,%) and phagocytic index (PI, c. u.).

Statistical analysis

The sets of quantitative indicators, the distribution of which differed from the normal one, were described using the median (Me) values and the lower and upper quartiles (Q1 – Q3). The statistical significance of the differences was assessed using the Mann-­Whitney U-test. To study the relationship between quantitative variables, the Spearman correlation coefficient was calculated. To assess the association of the studied indicators and the degree of differentiation, sensitivity and specificity were calculated, as well as ROC analysis. Statistical processing was performed using Statistica v. 13 and Jamovi 2.3.28 software. Differences were considered statistically significant at p ˂ 0.05.

Table 1
Clinical characteristics of patients included in the study

 Group

 Clinical characteristics

 Meaning

 Renal cancer, n = 74

 Age — median (Q1– Q3), years

 66 (58–70)

 Absolute leukocyte count x109/l

 7.02 (5.80–8.31)

 Absolute neutrophil count x109/l

 3.46 (2.70–4.90)

 NLR (Q1– Q3)

 1.33 (1.01–2.19)

 Sex

 male

 36

 female

 38

 Histotype:

 Clear cell carcinoma

 74

 Stage of the disease:

 I–II

 40

 III–IV

 34

 Renal benign neoplasms n = 18

 Age — median (Q1– Q3), years

 68 (56–75)

 Absolute leukocyte count x109/l

 4.60 (4.30–5.65)

 Absolute neutrophil count x109/l

 2.58 (2.10–2.68)

 NLR (Q1– Q3)

 1.19 (1.18–1.68)

 Sex

 male

 0

 female

 18

 Control groupn = 22

 Age — median (Q1– Q3), years

 54(52–66)

 Absolute leukocyte count x109/l

 6.10 (5.28–6.88)

 Absolute neutrophil count x109/l

 3.30 (2.82–3.97)

 NLR (Q1– Q3)

 1.73 (1.23–1.88)

 Sex

 male

 8

 female

 14

Note: NLR — neutrophil-­lymphocyte ratio.

Results and discussion

During the study, we did not find any significant change in the absolute amount of Nph in the blood of patients in the study groups. According to studies [15, 16], NETs are associated with tumor cell proliferation and affect tumor development. Analysis of the percentage of NETs showed an increase in their number in groups of patients with RC, both I–II and III–IV stages of RC, relative to the control group and the group of patients with RBN (Table 2).

Table 2
Indicators of neutrophil extracellular traps and phagocytic activity of circulating neutrophils in the study groups, Me (Q1– Q3)

 Indicators

 Control group (n = 22)

 Renal benign neoplasms (n = 18)

 Renal cancer stage I–II (n = 50)

 Renal cancer stage III–IV(n = 34)

 Number traps, %

 4.00 (3.00–4.75)

 3.00 (3.00–4.00)

 5 (4.00–7.00)*

 6.00 (5.00–8.00)*

 p

 -

 -

 p1 = 0.001, p2 = 0.001

 p1 = 0.001, p2 = 0.001

 Index trap, у. е.

 1.33(1.00–1.90)

 1.55 (1.45–1.60)

 1.69 (1.48–1.85)*

 1.63 (1.50–2.00)*

 p

 -

 -

 p1 = 0.007, p2 = 0.022

 p1 = 0.012, p2 = 0.024

 Phagocyticactivity, %

 13.00 (10.30–12.30)

 7.00 (5.00–11.00)*

 10.00 (8.75–12.30)*

 14.00 (10.00–17.00)*

 p

 -

 p1 = 0.001

 p2 = 0.006

 p1 = 0.189, p2 = 0.001, p3 = 0.001

 Phagocytic activity index, у. е.

 0.24 (0.19–0.29)

 0.17 (0.07–0.39)

 0.26 (0.20–0.39)*

 0.32 (0.29–0.36)*

 p

 -

 -

 p2 = 0.026

 p1 = 0.004, p2 = 0.024, p3 = 0.001

Note: p1 — reliability of differences in indicators from the values of the control group; p2 — reliability of differences in indicators from the values in the group with benign neoplasms; p3 — reliability of differences in indicators from the values of the previous stage of renal cancer; reliability of differences according to the Mann-­Whitney criterion: * (p  <  0.05).

We also found an increase in IT in the groups of patients with stages I–II and III–IV RC relative to the control group and the group of patients with RBN. When assessing PA and PI, a significant increase in these parameters was found in the groups of patients with RC relative to the control group and the group of patients with RBN. In addition, PA and PI of circulating Nph changed depending on the prevalence of RC, so a significant increase in these parameters was noted in the group of patients at stages III–IV RC relative to the group with stages I–II RC. According to previous studies [17], at the initial stages of lung cancer, NETs had cytotoxic properties in relation to cancer cells, and at later stages they demonstrated a pro-tumor effect. There is evidence that in breast cancer, Nph more actively form NETs in the presence of a tumor with G3 differentiation than G1 [18]. The formation of NETs is one of the mechanisms of “evasion” or shielding of cancer cells from the antitumor mechanisms of the immune system [19].

Our data indicate an increase in the ability of circulating Nph to form NETs, as well as an increase in their killing activity in groups with RP relative to patients with RBN and the control group. The correlation we found between the percentage of NETs (r  =  0.438, p  =  0.001), PA (r  =  0.431, p =  0.001) and IP (r  =  0.507, p  =  0.001) of Nph with the stage of RC may indicate an increase in their cytotoxic properties depending on the prevalence of RC. We assessed the expression of surface receptors that determine activation, degranulation, phagocytic activity and maturity of Nph. A significant increase in the number of Nph expressing CD66b receptors was found both at the initial and widespread stages of RC (Table 3). An increase in the number of CD66b+ Nph may indicate an increase in activated, mature, degranulating circulating Nph in patients in the study groups. There is evidence of an increase in the number and ability to form IL‑1 in CD66b+ Nph in other types of cancer [20], which is consistent with the results of our study in RC.

Table 3
Changes in the expression of surface receptors of circulating neutrophils in the study groups, Ме (Q1-Q3)

 Indicators

 Control group (n = 22)

 Renal benign neoplasms (n = 18)

 Renal cancer stage I–II (n = 50)

 Renal cancer stage III–IV(n = 34)

 CD11b+

 %

 89.10 (82.00–90.90)

 93.30 (85.00–93.90)

 87.40 (72.64–95.20)

 94.40 (73.30–97.90)

 109

 2.94 (2.70–3.00)

 2.4 (2.19–2.50)

 3.02 (2.51–3.30)

 3.27 (2.53–3.38)

 CD16+

 %

 86.10 (82.00–89.70)

 83.40 (82.00–89.50)

 89.00 (72.20–95.00)

 88.30 (61.20–94.40)

 109

 2.84 (2.71–2.96)

 2.15 (2.11–2.42)

 3.08 (2.49–3.31)

 3.06 (2.12–2.27)

 CD66b+

 %

 66.50 (57.80–77.20)

 65.60 (60.10–67.60)

 75.70 (62.80–86.90)

 70.30 (59.50–79.30)

 109

 2.26 (2.18–2.76)

 2.24 (2.14–2.51)

 2.62 (2.17–3.01)*

 2.43 (2.06–2.74)*

 p

 -

 -

 p2 = 0.001

 p1 = 0.012, p2 = 0.001

 CD63+

 %

 82.80 (78.10–95.60)

 78.30 (67.00–98.00)

 86.10 (68.30–96.00)

 81.30 (35.10–92.00)

 109

 2.73 (2.58–3.15)

 2.02 (1.72–2.53)

 2.98 (2.36–3.32)

 2.81 (1.21–3.18)

 CD11b+CD16+

 %

 86.30 (77.70–89.40)

 81.70 (80.30–89.50)

 82.00 (64.40–90.60)

 86.50 (61.10–93.50)

 109

 2.84 (2.56–2.95)

 2.10 (2.07–2.31)

 2.84 (2.23–3.13)

 2.99 (2.11–3.24)

Note: p1 — reliability of differences in indicators from the values of the control group; p2 — reliability of differences in indicators from the values in the group with benign neoplasms; reliability of differences according to the Mann-­Whitney criterion: * (p  <  0.05).

Changes in the expression values of CD11b, CD16, CD63 receptors of circulating Nph in the study groups were statistically insignificant. In multivariate Cox regression, an increase in the risk of developing RC was revealed with an increase in the expression of CD66b, TI, PA and the PI of circulating Nph (OR2  =  0.728, χ²  =  58.1, p  =  0.001). In the univariate logistic regression analysis for the differential diagnosis between renal RBN and RC, the following factors showed statistical significance: the percentage of CD66b+ Nph (OR 0.344 95% CI 0.128–0.559, p = 0.002), the TI (OR 9.173 95% CI 1.474–16.872, p = 0.020), PA of Nph (OR 1.555 95% CI 0.437–2.672, p = 0.006) and PIof Nph(OR 42.940 95% CI 12.259–73.622, p = 0.006). The area under the curve (AUC) of the model was 0.983, and RC could be diagnosed with a probability of 94.3% (Spec. = 0.889, Sens. = 0.962) (Figure).

Fig. ROC curve for the regression model of differential diagnosis of renal cancer and renal benign neoplasms taking into account the expression indicators of the CD66b receptor, the neutrophil extracellular traps index, phagocytic activity and the phagocytic activity index

We found a direct correlation between the change in the expression of the CD66b receptor and CD16 (r = 0.501, p = 0.001), as well as the CD66b receptor and CD63 (r = 0.688, p = 0.001) in groups of patients with stages I–II and stages III–IV RС. This may indicate an increase in the killing activity of neutrophils in the studied groups, since these receptors are markers of maturity, PA, the ability to degranulate and form NETs [21].

Conclusion

Thus, an increase in CD66b+ Nph and activation of extracellular traps release indicate an increase in the killing activity of Nph in RC. Simultaneous determination of the amount of CD66b+ Nph, TI, PA and the PI can be used for differential diagnosis between RBN and RC.

×

Об авторах

И. Р. Мягдиева

Ульяновский государственный университет

Автор, ответственный за переписку.
Email: ilseya2015@yandex.ru
ORCID iD: 0000-0002-3908-0840
SPIN-код: 1240-5547
г. Ульяновск, Российская Федерация

Т. В. Абакумова

Ульяновский государственный университет

Email: ilseya2015@yandex.ru
ORCID iD: 0000-0001-7559-5246
SPIN-код: 8564-4253
г. Ульяновск, Российская Федерация

Д. Р. Долгова

Ульяновский государственный университет

Email: ilseya2015@yandex.ru
ORCID iD: 0000-0001-5475-7031
SPIN-код: 7093-3564
г. Ульяновск, Российская Федерация

О. Ю. Горшков

Областной клинический онкологический диспансер

Email: ilseya2015@yandex.ru
ORCID iD: 0009-0000-8641-2580
г. Ульяновск, Российская Федерация

Т. П. Генинг

Ульяновский государственный университет

Email: ilseya2015@yandex.ru
ORCID iD: 0000-0002-5117-1382
SPIN-код: 7285-8939
г. Ульяновск, Российская Федерация

Г. В. Галиева

Ульяновский государственный университет

Email: ilseya2015@yandex.ru
ORCID iD: 0009-0007-4801-3248
г. Ульяновск, Российская Федерация

Список литературы

  1. Сальникова С.В., Славянская Т.А. современный взгляд на проблему лечения уротелиального рака // Вестник Российского университета дружбы народов. Серия: Медицина. 2018. Т. 22. № 4. C. 365–386. doi: 10.22363/2313-0245-2018-22-4-365-386.
  2. Savchenko AA, Borisov AG, Kudryavtsev IV, Gvozdev II, Moshev AV. Immunophenotype and metabolism are linked in peripheral blood neutrophils from patients with kidney cancer. Medical Immunology. 2020;22(5):887–896. doi: 10.15789/1563–0625-IAM‑2037
  3. Rosellini M, Marchetti A, Mollica V, Rizzo A, Santoni M, Massari F. Prognosticandpredictivebiomarkersforimmunotherapy in advanced renal cell carcinoma. Nat Rev Urol. 2023;20(3):133–157. doi: 10.1038/s41585-022-00676-0
  4. Чудилова Г.А., Нестерова И.В., Ковалева С.В., Ломтатидзе Л.В. Особенности влияний in vitro регуляторных цитокинов на фенотип субпопуляций CD62L+CD63-, CD62L+CD63+ и микробицидную активность нейтрофильных гранулоцитов пациентов с колоректальным раком // Вестник Российского университета дружбы народов. Серия: Медицина. 2020. Т. 24. № 4. C. 304–314.
  5. Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E, Chen J, Sieow JL, Penny HL, Ching GC, Devi S, Adrover JM, Li JLY, Liong KH, Tan L, Poon Z, Foo S, Chua JW, Su IH, Balabanian K, Bachelerie F, Biswas SK, Larbi A, Hwang WYK, Madan V, Koeffler HP, Wong SC, Newell EW, Hidalgo A, Ginhoux F, Ng LG. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity. 2018;48(2):364–379. doi: 10.1016/j.immuni.2018.02.002
  6. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. 2018. Т. 8. No 1. С. 7–18.
  7. Нестерова И.В., Чудилова Г.А., Ковалева С.В., Русинова Т.В., Павленко В.Н., Тараканов В.А., Барова Н.К., Малиновская В.В. Неоднозначное влияние рекомбинантного интерферона α2b на нетрансформированный и трансформированный фенотип функционально значимых субпопуляций нейтрофильных гранулоцитов в эксперименте in vitro. Иммунология. 2020. Т. 41. No 2. C. 112–124. doi: 10.33029/0206-4952-2020-41-2-124-134.
  8. Rice CM, Davies LC, Subleski JJ, Maio N, Gonzalez-­Cotto M, Andrews C, Patel NL, Palmieri EM, Weiss JM, Lee JM, Annunziata CM, Rouault TA, Durum SK, McVicar DW. Tumour-­elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat Commun. 2018;9(1):5099. doi: 10.1038/s41467-018-07505-2
  9. Kanamaru R, Ohzawa H, Miyato H, Matsumoto S, Haruta H, Kurashina K, Saito S, Hosoya Y, Yamaguchi H, Yamashita H, Seto Y, Lefor AK, Sata N, Kitayama J. Low density neutrophils (LDN) in postoperative abdominal cavity assist the peritoneal recurrence through the production of neutrophil extracellular traps (NETs). Sci Rep. 2018;8(1):632. doi: 10.1038/s41598-017-19091-2
  10. Pruchniak MP, Ostafin M, Wachowska M, Jakubaszek M, Kwiatkowska B, Olesinska M, Zycinska K, Demkow U. Neutrophil extracellular traps generation and degradation in patients with granulomatosis with polyangiitis and systemic lupus erythematosus. Autoimmunity. 2019;52(3):126–135. doi: 10.1080/08916934.2019.1631812
  11. Becker RC. COVID‑19‑associated vasculitis and vasculopathy.J. Thromb. Thrombolysis. 2020;50:499–511. doi: 10.1007/s11239-020-02230-4.
  12. Cedervall J, Hamidi A, Olsson AK. Platelets. NETs and cancer.Thromb. Res. 2018;164:148–152. doi: 10.1016/j.thromres.2018.01.049.
  13. Schedel F, Mayer-­Hain S, Pappelbaum KI, Metze D, Stock M, Goerge T, Loser K, Sunderkötter C, Luger TA, Weishaupt C. Evidence and impact of neutrophil extracellular traps in malignant melanoma. Pigment Cell Melanoma Res. 2020;33(1):63–73. doi: 10.1111/pcmr.12818
  14. Li Y, Yang Y, Gan T, Zhou J, Hu F, Hao N, Yuan B, Chen Y, Zhang M. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol. 2019;55(1):69–80. doi: 10.3892/ijo.2019.4808
  15. Brinkmann V. Neutrophil Extracellular Traps in the Second Decade.J Innate Immun. 2018;10:414–421. doi: 10.1159/000489829.
  16. Sangaletti S, Iannelli F, Zanardi F, Cancila V, Portararo P, Botti L, Vacca D, Chiodoni C, Di Napoli A, Valenti C, Rizzello C, Vegliante MC, Pisati F, Gulino A, Ponzoni M, Colombo MP, Tripodo C. Intra-tumour heterogeneity of diffuse large B-cell lymphoma involves the induction of diversified stroma-­tumour interfaces. EBioMedicine. 2020;61:103055. doi: 10.1016/j.ebiom.2020.103055
  17. Semenova AB, Shamanova AJu. The microenvironment of invasive carcinomas of the breast of “non-specific” and “specific” types, taking into account the malignancy of tumors (literature review).Ural Medical Journal. 2014;8:23–28.
  18. Semenova AB, Shamanova AJu, Shishkova JuS, Dolgushin II, Kazachkov EL, Vazhenin AV. The formation of autologous neutrophils extracellular DNA networks when meeting with tumor cells of breast carcinoma, depending on the degree of malignancy and tumor receptor status. Ural Medical Journal. 2014;8:29–32.
  19. Kanamaru R, Ohzawa H, Miyato H, Matsumoto S, Haruta H, Kurashina K, Saito S, Hosoya Y, Yamaguchi H, Yamashita H, Seto Y, Lefor AK, Sata N, Kitayama J. Low density neutrophils (LDN) in postoperative abdominal cavity assist the peritoneal recurrence through the production of neutrophil extracellular traps (NETs). Sci Rep. 2018;8(1):632. doi: 10.1038/s41598-017-19091-2
  20. Zhang Y, Wang Z, Lu Y, Sanchez DJ, Li J, Wang L, Meng X, Chen J, Kien TT, Zhong M, Gao WQ, Ding X. Region-­Specific CD16+ Neutrophils Promote Colorectal Cancer Progression by Inhibiting Natural Killer Cells. Adv Sci (Weinh). 2024;11(29): e2403414. doi: 10.1002/advs.202403414

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Fig. ROC curve for the regression model of differential diagnosis of renal cancer and renal benign neoplasms taking into account the expression indicators of the CD66b receptor, the neutrophil extracellular traps index, phagocytic activity and the phagocytic activity index

Скачать (28KB)

© Мягдиева И.Р., Абакумова Т.В., Долгова Д.Р., Горшков О.Ю., Генинг Т.П., Галиева Г.В., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.