Выбор оптимального сетчатого имплантата для операций герниопластики в зависимости от свойств сетчатых имплантатов

Обложка

Цитировать

Полный текст

Аннотация

Серебро и титан были первыми используемыми элементами в эру биоматериалов, укрепляющих грыжу, около ста лет назад, и в настоящее время их количество достигает 150 видов. Уникальность системы классификации сетчатых имплантатов Дикен и Лейк заключается в ее зависимости от свойств используемых материалов при их классификации, где были установлены три основные категории сетчатых имплантатов: постоянные синтетические, рассасывающиеся (биологического происхождения), далее разделенные на композитные и некомпозитные типы, а также гибридные сетчатые имплантаты. Физические характеристики каждой категории определяются размером пор, диаметром нити, толщиной и плотностью. Кроме того, прочность на разрыв, сохранение швов, испытание на одноосное растяжение и плоскостное двухосное растяжение, разрыв шарика позволяют уточнить свойства сетчатого имплантата. Статья посвящена изучению типов сетчатых материалов, используемых для лечения грыж переднебоковой стенки живота, с описанием свойств их каркасных материалов, покрытия и барьеров, а также их усовершенствованию.

Об авторах

А. В. Протасов

Российский университет дружбы народов

Email: mekhaeel60@yahoo.com
ORCID iD: 0000-0001-5439-9262
SPIN-код: 3126-7423
г. Москва, Российская Федерация

М. Ш. Ф. Мекхаеэль

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: mekhaeel60@yahoo.com
ORCID iD: 0000-0002-0381-3379
г. Москва, Российская Федерация

С. М. А. Салем

Российский университет дружбы народов

Email: mekhaeel60@yahoo.com
ORCID iD: 0009-0008-0690-6811
г. Москва, Российская Федерация

Список литературы

  1. Cole P. The filigree operation for inguinal hernia repair. Br J Surg.1941;29:168—81. doi: 10.1007/978-3-319-78411-3
  2. Deeken CR, Abdo MS, Frisella MM, Matthews BD. Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair. J Am Coll Surg. 2011;212(1):68—79. doi: 10.1016/j.jamcollsurg.2010.09.012
  3. Koontz AR. Preliminary Report on the Use of Tantalum Mesh in the Repair of Ventral Hernias. Ann Surg. 1948;127(5):1079—85. doi: 10.1097/00000658-194805000-00026
  4. Khanna, N. and Jain, Pradeep. The Use Of Marlex Mesh For Incisional Hernia Repair. Ind. Jour Plast Surg. 2024;(17):11—13. doi: 10.1055/s‑0043-1778480
  5. Deeken CR, Lake SP. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. J Mech Behav Biomed Mater. 2017;(74):411—427. doi: 10.1016/j.jmbbm.2017.05.008
  6. Brown CN, Finch JG. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 2010, 92, 272—278. doi: 10.1308/003588410X12664192076296
  7. Bellón JM, Rodríguez M, García-­Honduvilla N, Pascual G, Gómez Gil V, Buján J. Peritoneal effects of prosthetic meshes used to repair abdominal wall defects: monitoring adhesions by sequential laparoscopy. J Laparoendosc Adv Surg Tech A. 2007;17(2):160—6. doi: 10.1089/lap.2006.0028
  8. Elango S, Perumalsamy S, Ramachandran K, Vadodaria K. Mesh materials and hernia repair. BioMed. 2017;(7).16. doi: 10.1051/bmdcn/2017070316
  9. McGinty JJ, Hogle NJ, McCarthy H, Fowler DL. A comparative study of adhesion formation and abdominal wall ingrowth after laparoscopic ventral hernia repair in a porcine model using multiple types of mesh. Surg Endosc. 2005;19(6):786—90. doi: 10.1007/s00464-004-8174-9
  10. Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V. PVDF as a new polymer for the construction of surgical meshes. Biomater. 2002;23(16):3487—93. doi: 10.1016/s0142-9612(02)00070-4
  11. Klink CD, Junge K, Binnebösel M, Alizai HP, Otto J, Neumann UP, Klinge U. Comparison of long-term biocompabtiblty of PVDF and PP meshes. J Invest Surg. 2011;24(6):292—9. doi: 10.3109/08941939.2011.589883
  12. Amid PK. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia. 1997;(1):15—21. doi: 10.1007/BF02426382
  13. Gillion JF, Lepere M, Barrat C. Two-year patient-­related outcome measures (PROM) of primary ventral and incisional hernia repair using a novel three-­dimensional composite polyester monofilament mesh: the SymCHro registry study. Hernia. 2019:(23):767—781. doi: 10.1007/s10029-019-01924‑w
  14. Tabbara M, Genser L, Bossi M, Barat M, Polliand C, Carandina S, Barrat C. Inguinal Hernia Repair Using Self-adhering Sutureless Mesh: Adhesix™: A 3-Year Follow-up with Low Chronic Pain and Recurrence Rate. Am Surg. 2016;82(2):112—6. doi: 10.1177/000313481608200212
  15. Edwards C. Self-fixating mesh is safe and feasible for laparoscopic inguinal hernia repair. Surgical Endoscopy and Other Interventional Techniques. Conference: 2011 Scientific Session of the Society of American Gastrointestinal and Endoscopic Surgeons, SAGES San Antonio, TX United States (30.03.2011—02.04.2011). 25: S324.
  16. Kolbe T, Hollinsky C, Walter I, Joachim A, Rülicke T. Influence of a new self-gripping hernia mesh on male fertility in a rat model. Surg Endosc. 2010;24(2):455—61. doi: 10.1007/s00464-009-0596‑y
  17. Benito-­Martínez S, Rodríguez M, García-­Moreno F, Pérez-­Köhler B, Peña E, Calvo B, Pascual G, Bellón JM. Self-adhesive hydrogel meshes reduce tissue incorporation and mechanical behavior versus microgrips self-fixation: a preclinical study. Hernia. 2022;26(2):543—555. doi: 10.1007/s10029-021-02552‑z
  18. Nienhuijs S, Staal E, Strobbe L, Rosman C, Groenewoud H, Bleichrodt R. Chronic pain after mesh repair of inguinal hernia: a systematic review. Am J Surg. 2007;194(3):394—400. doi: 10.1016/j.amjsurg.2007.02.012
  19. Mirel S, Pusta A, Moldovan M, Moldovan S. Antimicrobial Meshes for Hernia Repair: Current Progress and Perspectives. J Clin Med. 2022;11(3):883. doi: 10.3390/jcm11030883
  20. Labay C, Canal JM, Modic M, Cvelbar U, Quiles M, Armengol M, Arbos MA, Gil FJ, Canal C. Antibiotic-­loaded polypropylene surgical meshes with suitable biological behavior by plasma functionalization and polymerization. Biomater.2015;71:132—144. doi: 10.1016/j.biomaterials.2015.08.023
  21. Junge K, Rosch R, Klinge U, Krones C, Klosterhalfen B, Mertens PR, Lynen P, Kunz D, Preiss A, Peltroche-­Llacsahuanga H, Schumpelick V. Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomater. 2005;26(7):787—93. doi: 10.1016/j.biomaterials.2004.02.070
  22. Wiegering A, Sinha B, Spo r L, Klinge U, Steger U, Germer CT, Dietz UA. Gentamicin for prevention of intraoperative mesh contamination: demonstration of high bactericide effect (in vitro) and low systemic bioavailability (in vivo). Hernia. 2014;18(5):691—700. doi: 10.1007/s10029-014-1293‑x
  23. Kilic D, Agalar C, Ozturk E, Denkbas EB, Cime A, Agalar F. Antimicrobial activity of cefazolin-­impregnated mesh grafts. ANZ J Surg. 2007;77(4):256—60. doi: 10.1111/j.1445-2197.2007.04029. x
  24. Suárez-­Grau JM, Morales-­Conde S, González Galán V, Martín Cartes JA, Docobo Durantez F, Padillo Ruiz FJ. Antibiotic embedded absorbable prosthesis for prevention of surgical mesh infection: experimental study in rats. Hernia. 2015;19(2):187—94. doi: 10.1007/s10029-014-1334-5
  25. Blatnik JA, Thatiparti TR, Krpata DM, Zuckerman ST, Rosen MJ, von Recum HA. Infection prevention using affinity polymer-­coated, synthetic meshes in a pig hernia model. J Surg Res. 2017; 219:5—10. doi: 10.1016/j.jss.2017.05.003
  26. Sanbhal N, Li Y, Khatri A, Peerzada M, Wang L. Chitosan Cross-­Linked Bio-based Antimicrobial Polypropylene Meshes for Hernia Repair Loaded with Levofloxacin HCl via Cold Oxygen Plasma. Coati. 2019(9):168. doi: 10.3390/coatings9030168
  27. Song Z, Peng Z, Liu Z, Yang J, Tang R, Gu Y. Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats. Tissue Eng Part A. 2013; 19(13—14):1543—53. doi: 10.1089/ten.TEA.2011.0748
  28. Avetta P, Nisticò R, Faga MG, D’Angelo D, Boot EA, Lamberti R, Martorana S, Calza P, Fabbri D, Magnacca G. Hernia-­repair prosthetic devices functionalised with chitosan and ciprofloxacin coating: Controlled release and antibacterial activity. J. Mater. Chem. B. 2020(8):1049. doi: 10.1039/C9TB02537E
  29. Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Biomimetic double-­sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-­polycaprolactone nanofibers for potential hernia repair applications. Int J Biol Macromol. 2020:(15):165(Pt A):902—917. doi: 10.1016/j.ijbiomac.2020.09.229
  30. Pérez-­Köhler B, Benito-­Martínez S, García-­Moreno F, Rodríguez M, Pascual G, Bellón JM. Preclinical bioassay of a novel antibacterial mesh for the repair of abdominal hernia defects. Surg. 2020;167(3):598—608. doi: 10.1016/j.surg.2019.10.010
  31. Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev. 2021;(174):406—424. doi: 10.1016/j.addr.2021.04.025
  32. Hodgdon T, Danrad R, Patel MJ, Smith SE, Richardson ML, Ballard DH, Ali S, Trace AP, DeBenedectis CM, Zygmont ME, Lenchik L, Decker SJ. Logistics of Three-dimensional Printing: Primer for Radiologists. Acad Radiol. 2018;25(1):40—51. doi: 10.1016/j.acra.2017.08.003
  33. Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017.7; 9(2):024102. doi: 10.1088/1758-5090/aa7279
  34. Pantermehl S, Emmert S, Foth A, Grabow N, Alkildani S, Bader R Barbeck M, Jung O. 3D Printing for Soft Tissue Regeneration and Applications in Medicine. Biomed. 2021:(9):336. doi: 10.3390/biomedicines9040336
  35. Ballard DH, Jammalamadaka U, Tappa K, Weisman JA, Boyer CJ, Alexander JS, Woodard PK. 3D printing of surgical hernia meshes impregnated with contrast agents: in vitro proof of concept with imaging characteristics on computed tomography. 3D Print Med. 2018;7; 4(1):13. doi: 10.1186/s41205-018-0037-4
  36. Do AV, Worthington KS, Tucker BA, Salem AK. Controlled drug delivery from 3D printed two-photon polymerized poly (ethylene glycol) dimethacrylate devices. Int J Pharm. 2018;552(1—2):217—224. doi: 10.1016/j.ijpharm.2018.09.065
  37. Mir M, Ansari U, Najabat Ali M. Macro-scale model study of a tunable drug dispensation mechanism for controlled drug delivery in potential wound-­healing applications. J Appl Biomater Funct Mater. 2017;15(1): e63‑e69. doi: 10.5301/jabfm.5000280
  38. Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H. 4D printing and stimuli-­responsive materials in biomedical aspects. Acta Biomater. 2019;92:19—36. doi: 10.1016/j.actbio.2019.05.005
  39. Pravin S, Sudhir A. Integration of 3D printing with dosage forms: A new perspective for modern healthcare. Biomed Pharmacother.2018;107:146—154. doi: 10.1016/j.biopha.2018.07.167

© Протасов А.В., Мекхаеэль М.Ш., Салем С.М., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах