Молекулярно-генетические сигнатуры плоскоклеточного рака головы и шеи и их изменения, индуцированные протонным облучением
- Авторы: Джуманиязова Э.Д.1, Лохонина А.В.1,2, Сентябрева А.В.1,3, Косырева А.М.1,3
-
Учреждения:
- Российский университет дружбы народов
- Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова
- Российский научный центр хирургии имени академика Б.В. Петровского
- Выпуск: Том 28, № 4 (2024): ОНКОЛОГИЯ
- Страницы: 413-426
- Раздел: ОНКОЛОГИЯ
- URL: https://journals.rudn.ru/medicine/article/view/42007
- DOI: https://doi.org/10.22363/2313-0245-2024-28-4-413-426
- EDN: https://elibrary.ru/GKJBSB
Цитировать
Полный текст
Аннотация
Плоскоклеточный рак головы и шеи (ПРГШ) занимает седьмое место в десятке наиболее распространенных злокачественных новообразований в мире. Отмечается рост общей заболеваемости ПРГШ, и прогнозируется, что к 2030 году она будет увеличиваться примерно на 30 % ежегодно. Клинически ПРГШ характеризуется агрессивным течением: быстрым локальным распространением, резистентностью к различным методам противоопухолевого лечения и частыми рецидивами. Несмотря на усовершенствования диагностических и терапевтических подходов за последние два десятилетия, главным образом из-за соответствующей гетерогенности этих опухолей исходы пациентов с ПРГШ не показали существенных улучшений, особенно в отношении пациентов с поздней стадией TNM, с общей пятилетней выживаемостью составляющей 50 %. Примерно 75 % пациентов ПРГШ назначается лучевая терапия в качестве самостоятельного вида терапии или в составе комплексного лечения. На сегодняшний день одним из основных путей повышения эффективности лучевой терапии при ПРГШ считается сочетание максимально допустимого повышения дозы облучения в опухоли-мишени и снижения при минимизации таковой в окружающих здоровых тканях. С этой точки зрения протонная терапия (ПТ) обладает выраженным преимуществом по сравнению с различными видами фотонного облучения. Несмотря на растущий интерес ученых к ПТ, исследований, направленны на выявление молекулярно-генетических изменений, индуцированных ПТ, недостаточно, тогда как, на наш взгляд, они очень важны для понимания внутриклеточных механизмов, ведущих либо к уничтожению опухолевых клеток, либо к развитию радиорезистентности. В данном обзоре обобщены имеющиеся знания об изменениях основных сигнальных путей опухолевых клеток ПРГШ под действием ПТ.
Об авторах
Э. Д. Джуманиязова
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: enar2017@yandex.ru
ORCID iD: 0000-0002-8226-0433
SPIN-код: 1780-5326
г. Москва, Российская Федерация
А. В. Лохонина
Российский университет дружбы народов; Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова
Email: enar2017@yandex.ru
ORCID iD: 0000-0001-8077-2307
SPIN-код: 4521-2250
г. Москва, Российская Федерация
А. В. Сентябрева
Российский университет дружбы народов; Российский научный центр хирургии имени академика Б.В. Петровского
Email: enar2017@yandex.ru
ORCID iD: 0000-0001-5064-219X
SPIN-код: 6966-9959
г. Москва, Российская Федерация
А. М. Косырева
Российский университет дружбы народов; Российский научный центр хирургии имени академика Б.В. Петровского
Email: enar2017@yandex.ru
ORCID iD: 0000-0002-6182-1799
SPIN-код: 5421-5520
г. Москва, Российская Федерация
Список литературы
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
- Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J. 2022;233(9):780–786. doi: 10.1038/s41415-022-5166-x
- IARC. List of Classifications by cancer sites with sufficient or limited evidence in humans. IARC Monograpghs; 2018. 14 p.
- Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92. doi: 10.1038/s41572-020-00224-3
- Sun Z, Sun X, Chen Z, Du J, Wu Y. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int J Pept Res Ther. 2022;28(1):19. doi: 10.1007/s10989-021-10334-5.
- Georgopoulos R, Liu JC. Examination of the patient with head and neck cancer. Surg Oncol Clin N Am. 2015;24(3):409–21. doi: 10.1016/j.soc.2015.03.003
- Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist. 2010;15(9):994–1001. doi: 10.1634/theoncologist.2009-0289
- Guan Z, Liu J, Zheng L. Effect of radiotherapy on head and neck cancer tissues in patients receiving radiotherapy: a bioinformatics analysis-based study. Sci Rep. 2024;14(1):6304. doi: 10.1038/s41598-024-56753-4
- Nissi L, Suilamo S, Kytö E, Vaittinen S, Irjala H, Minn H. Recurrence of head and neck squamous cell carcinoma in relation to high-risk treatment volume. Clin Transl Radiat Oncol. 2021;27:139–146. doi: 10.1016/j.ctro.2021.01.013
- Alfouzan AF. Radiation therapy in head and neck cancer. Saudi Med J. 2021;42(3):247–254. doi: 10.15537/smj.2021.42.3.20210660
- Borras JM, Barton M, Grau C, Corral J, Verhoeven R, Lemmens V, van Eycken L, Henau K, Primic-Zakelj M, Strojan P, Trojanowski M, Dyzmann-Sroka A, Kubiak A, Gasparotto C, Defourny N, Malicki J, Dunscombe P, Coffey M, Lievens Y. The impact of cancer incidence and stage on optimal utilization of radiotherapy: Methodology of a population based analysis by the ESTRO-HERO project. Radiother Oncol. 2015;116(1):45–50. doi: 10.1016/j.radonc.2015.04.021
- Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C, Miles EA, Miah AB, Newbold K, Tanay M, Adab F, Jefferies SJ, Scrase C, Yap BK, A’Hern RP, Sydenham MA, Emson M, Hall E; PARSPORT trial management group. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12(2):127–36. doi: 10.1016/S1470-2045(10)70290-4
- Rosenthal DI, Chambers MS, Fuller CD, Rebueno NC, Garcia J, Kies MS, Morrison WH, Ang KK, Garden AS. Beam path toxicities to non-target structures during intensity-modulated radiation therapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;72(3):747–55. doi: 10.1016/j.ijrobp.2008.01.012
- Newhauser W. Proton and Charged Particle Radiotherapy. Medical Physics. 2008;5(35). doi: 10.1118/1.2907963
- Beddok A, Vela A, Calugaru V, Tessonnier T, Kubes J, Dutheil P, Gerard A, Vidal M, Goudjil F, Florescu C, Kammerer E, Benezery K, Herault J, Poortmans P, Bourhis J, Thariat J; GORTEC, the 3 French proton centers. Proton therapy for head and neck squamous cell carcinomas: A review of the physical and clinical challenges. Radiother Oncol. 2020;147:30–39. doi: 10.1016/j.radonc.2020.03.006
- Taheri-Kadkhoda Z, Björk-Eriksson T, Nill S, Wilkens JJ, Oelfke U, Johansson KA, Huber PE, Münter MW. Intensity-modulated radiotherapy of nasopharyngeal carcinoma: a comparative treatment planning study of photons and protons. Radiat Oncol. 2008;3:4. doi: 10.1186/1748-717X-3-4
- Simone CB 2nd, Ly D, Dan TD, Ondos J, Ning H, Belard A, O’Connell J, Miller RW, Simone NL. Comparison of intensity-modulated radiotherapy, adaptive radiotherapy, proton radiotherapy, and adaptive proton radiotherapy for treatment of locally advanced head and neck cancer. Radiother Oncol. 2011;101(3):376–82. doi: 10.1016/j.radonc.2011.05.028
- van de Water TA, Bijl HP, Schilstra C, Pijls-Johannesma M, Langendijk JA. The potential benefit of radiotherapy with protons in head and neck cancer with respect to normal tissue sparing: a systematic review of literature. Oncologist. 2011;16(3):366–77. doi: 10.1634/theoncologist.2010-0171
- Nuyts S, Bollen H, Ng SP, Corry J, Eisbruch A, Mendenhall WM, Smee R, Strojan P, Ng WT, Ferlito A. Proton Therapy for Squamous Cell Carcinoma of the Head and Neck: Early Clinical Experience and Current Challenges. Cancers (Basel). 2022;14(11):2587. doi: 10.3390/cancers14112587
- Liu H, Chang JY. Proton therapy in clinical practice. Chin J Cancer. 2011;30(5):315–26. doi: 10.5732/cjc.010.10529
- Bragg WH, Kleeman R. On the ionization curves of radium. J Philos Mag. 1904;6:726–738. doi: 10.1080/14786440409463246
- Byun HK, Han MC, Yang K, Kim JS, Yoo GS, Koom WS, Kim YB. Physical and Biological Characteristics of Particle Therapy for Oncologists. Cancer Res Treat. 2021;53(3):611–620. doi: 10.4143/crt.2021.066
- Vitti ET, Parsons JL. The Radiobiological Effects of Proton Beam Therapy: Impact on DNA Damage and Repair. Cancers (Basel). 2019;11(7):946. doi: 10.3390/cancers11070946
- Alan Mitteer R, Wang Y, Shah J, Gordon S, Fager M, Butter PP, Jun Kim H, Guardiola-Salmeron C, Carabe-Fernandez A, Fan Y. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci Rep. 2015;5:13961. doi: 10.1038/srep13961
- Jumaniyazova E, Smyk D, Vishnyakova P, Fatkhudinov T, Gordon K. Photon- and Proton-Mediated Biological Effects: What Has Been Learned? Life (Basel). 2022;13(1):30. doi: 10.3390/life13010030
- Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4(9):737–47. doi: 10.1038/nrc1451
- Frame CM, Chen Y, Gagnon J, Yuan Y, Ma T, Dritschilo A, Pang D. Proton induced DNA double strand breaks at the Bragg peak: Evidence of enhanced LET effect. Front Oncol. 2022;12:930393. doi: 10.3389/fonc.2022.930393
- Miszczyk J, Rawojc K, Borkowska AM, Panek A, Swakon J, Galas A, Ahmed MM, Prasanna PGS. Therapeutic proton irradiation results in apoptosis and caspase‑3 activation in human peripheral blood lymphocytes. Transl Cancer Res 2018;7(4):879–889. doi: 10.21037/tcr.2018.06.14
- Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, Suzumoto Y, Nojima K, Furusawa Y, Matsuura N. Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res. 2005;65(1):113–120. doi: 10.1158/0008-5472.113.65.1
- Grinde MT, Vik J, Camilio KA, Martinez-Zubiaurre I, Hellevik T. Ionizing radiation abrogates the pro-tumorigenic capacity of cancer-associated fibroblasts co-implanted in xenografts. Sci Rep. 2017;7:46714. doi: 10.1038/srep46714
- Genard G, Wera AC, Huart C, Le Calve B, Penninckx S, Fattaccioli A, Tabarrant T, Demazy C, Ninane N, Heuskin AC, Lucas S, Michiels C. Proton irradiation orchestrates macrophage reprogramming through NFκB signaling. Cell Death Dis. 2018;9(7):728. doi: 10.1038/s41419-018-0757-9
- Mirjolet C, Nicol A, Limagne E, Mura C, Richard C, Morgand V, Rousseau M, Boidot R, Ghiringhelli F, Noel G, Burckel H. Impact of proton therapy on antitumor immune response. Sci Rep. 2021;11(1):13444. doi: 10.1038/s41598-021-92942-1
- Lupu-Plesu M, Claren A, Martial S, N’Diaye PD, Lebrigand K, Pons N, Ambrosetti D, Peyrottes I, Feuillade J, Hérault J, Dufies M, Doyen J, Pagès G. Effects of proton versus photon irradiation on (lymph)angiogenic, inflammatory, proliferative and anti-tumor immune responses in head and neck squamous cell carcinoma. Oncogenesis. 2017;6(7): e354. doi: 10.1038/oncsis.2017.56
- Wang L, Fossati P, Paganetti H, Ma L, Gillison M, Myers JN, Hug E, Frank SJ. The Biological Basis for Enhanced Effects of Proton Radiation Therapy Relative to Photon Radiation Therapy for Head and Neck Squamous Cell Carcinoma. Int J Part Ther. 2021;8(1):3–13. doi: 10.14338/IJPT-20-00070.1
- Ha PK, Chang SS, Glazer CA, Califano JA, Sidransky D. Molecular techniques and genetic alterations in head and neck cancer. Oral Oncol. 2009;45(4–5):335–9. doi: 10.1016/j.oraloncology.2008.05.015
- Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–282. doi: 10.1038/nrc.2018.11
- Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25(1):133–143. doi: 10.1038/cdd.2017.174
- Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18(2):89–102. doi: 10.1038/nrc.2017.109
- Kaiser AM, Attardi LD. Deconstructing networks of p53‑mediated tumor suppression in vivo. Cell Death Differ. 2018;25(1):93–103. doi: 10.1038/cdd.2017.171
- Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53‑mediated tumour suppression? Cell Death Differ. 2018;25(1):104–113. doi: 10.1038/cdd.2017.169
- Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–582. doi: 10.1038/nature14129
- Di Pietro C, Piro S, Tabbì G, Ragusa M, Di Pietro V, Zimmitti V, Cuda F, Anello M, Consoli U, Salinaro ET, Caruso M, Vancheri C, Crimi N, Sabini MG, Cirrone GA, Raffaele L, Privitera G, Pulvirenti A, Giugno R, Ferro A, Cuttone G, Lo Nigro S, Purrello R, Purrello F, Purrello M. Cellular and molecular effects of protons: apoptosis induction and potential implications for cancer therapy. Apoptosis. 2006;11(1):57–66. doi: 10.1007/s10495-005-3346-1
- Lee KB, Lee JS, Park JW, Huh TL, Lee YM. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Exp Mol Med. 2008;40(1):118–29. doi: 10.3858/emm.2008.40.1.118
- Chun SY, Nam KS, Lee KS. Proton Beam Induces P53‑mediated Cell Cycle Arrest in HepG2 Hepatocellular Carcinoma Cells. Biotechnol Bioproc. E. 2020;25;141–148. doi: 10.1007/s12257-019-0390-1
- Lee CL, Blum JM, Kirsch DG. Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl. Cancer Res. 2013;2(5):412–421. doi: 10.3978/j.issn.2218-676X.2013.09.01
- Bravatà V, Cammarata FP, Minafra L, Pisciotta P, Scazzone C, Manti L, Savoca G, Petringa G, Cirrone GAP, Cuttone G, Gilardi MC, Forte GI, Russo G. Proton-irradiated breast cells: molecular points of view. J Radiat Res. 2019;60(4):451–465. doi: 10.1093/jrr/rrz032
- Lee KB, Kim KR, Huh TL, Lee YM. Proton induces apoptosis of hypoxic tumor cells by the p53‑dependent and p38/JNK MAPK signaling pathways. Int J Oncol. 2008;33(6):1247–56. doi: 10.3892/ijo_00000115.
- Chung CH, Germain A, Subramaniam RM, Heilmann AM, Fedorchak K, Ali SM, Miller VA, Palermo RA, Fakhry C. Genomic alterations in human epidermal growth factor receptor 2 (HER2/ERBB2) in head and neck squamous cell carcinoma. Head Neck. 2017;39(1): E15-E19. doi: 10.1002/hed.24587
- Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(2):228–240. doi: 10.1016/j.semcancer.2018.01.008
- Xu MJ, Johnson DE, Grandis JR. EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev. 2017;36(3):463–473. doi: 10.1007/s10555-017-9687-8
- Byeon HK, Ku M, Yang J. Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med. 2019;51(1):1–14. doi: 10.1038/s12276-018-0202-2
- Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3–20. doi: 10.1002/1878-0261.12155
- Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis. 2019;10(8):540. doi: 10.1038/s41419-019-1769-9
- Madoz-Gúrpide J, Zazo S, Chamizo C, Casado V, Caramés C, Gavín E, Cristóbal I, García-Foncillas J, Rojo F. Activation of MET pathway predicts poor outcome to cetuximab in patients with recurrent or metastatic head and neck cancer. J Transl Med. 2015;13:282. doi: 10.1186/s12967-015-0633-7
- Park HJ, Oh JS, Chang JW, Hwang SG, Kim JS. Proton Irradiation Sensitizes Radioresistant Non-small Cell Lung Cancer Cells by Modulating Epidermal Growth Factor Receptor-mediated DNA Repair. Anticancer Res. 2016;36(1):205–12
- Juvkam IS, Zlygosteva O, Sitarz M, Thiede B, Sørensen BS, Malinen E, Edin NJ, Søland TM, Galtung HK. Proton Compared to X–Irradiation Induces Different Protein Profiles in Oral Cancer Cells and Their Derived Extracellular Vesicles. Int J Mol Sci. 2023;24(23):16983. doi: 10.3390/ijms242316983
- Ogata T, Teshima T, Inaoka M, Minami K, Tsuchiya T, Isono M, Furusawa Y, Matsuura N. Carbon ion irradiation suppresses metastatic potential of human non-small cell lung cancer A549 cells through the phosphatidylinositol‑3‑kinase/Akt signaling pathway. J Radiat Res. 2011;52(3):374–9. doi: 10.1269/jrr.10102
- Stahler C, Roth J, Cordes N, Taucher-Scholz G, Mueller-Klieser W. Impact of carbon ion irradiation on epidermal growth factor receptor signaling and glioma cell migration in comparison to conventional photon irradiation. Int J Radiat Biol. 2013;89(6):454–61. doi: 10.3109/09553002.2013.766769
- Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl): S7-S19. doi: 10.1177/1758834011422556
- Ma PC, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003;22(4):309–25. doi: 10.1023/a:1023768811842
- Khedkar HN, Chen LC, Kuo YC, Wu ATH, Huang HS. Multi-Omics Identification of Genetic Alterations in Head and Neck Squamous Cell Carcinoma and Therapeutic Efficacy of HNC018 as a Novel Multi-Target Agent for c-MET/STAT3/AKT Signaling Axis. Int J Mol Sci. 2023;24(12):10247. doi: 10.3390/ijms241210247
- Cho YA, Kim EK, Heo SJ, Cho BC, Kim HR, Chung JM, Yoon SO. Alteration status and prognostic value of MET in head and neck squamous cell carcinoma. J Cancer. 2016;7(15):2197–2206. doi: 10.7150/jca.16686
- Rothenberger NJ, Stabile LP. Hepatocyte Growth Factor/c-Met Signaling in Head and Neck Cancer and Implications for Treatment. Cancers (Basel). 2017;9(4):39. doi: 10.3390/cancers9040039
- Szturz P, Raymond E, Abitbol C, Albert S, de Gramont A, Faivre S. Understanding c-MET signalling in squamous cell carcinoma of the head & neck. Crit Rev Oncol Hematol. 2017;111:39–51. doi: 10.1016/j.critrevonc.2017.01.004
- Lang L, Chen F, Li Y, Shay C, Yang F, Dan H, Chen ZG, Saba NF, Teng Y. Adaptive c-Met-PLXDC2 Signaling Axis Mediates Cancer Stem Cell Plasticity to Confer Radioresistance-associated Aggressiveness in Head and Neck Cancer. Cancer Res Commun. 2023;3(4):659–671. doi: 10.1158/2767-9764.CRC-22-0289
- Liu D, Zhong M, Zhan D, Zhang Y, Liu S. Roles of the HGF/Met signaling in head and neck squamous cell carcinoma: Focus on tumor immunity (Review). Oncol Rep. 2020;44(6):2337–2344. doi: 10.3892/or.2020.7799
- Marquard FE, Jücker M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem Pharmacol. 2020;172:113729. doi: 10.1016/j.bcp.2019.113729
- Vander Broek R, Mohan S, Eytan DF, Chen Z, Van Waes C. The PI3K/Akt/mTOR axis in head and neck cancer: functions, aberrations, cross-talk, and therapies. Oral Dis. 2015;21(7):815–25. doi: 10.1111/odi.12206
- Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3‑kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19. doi: 10.1038/nrg1879
- Zhang P, Steinberg BM. Overexpression of PTEN/MMAC1 and decreased activation of Akt in human papillomavirus-infected laryngeal papillomas. Cancer Res. 2000;60(5):1457–62
- Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5‑trisphosphate. J Biol Chem. 1998;273(22):13375–8. doi: 10.1074/jbc.273.22.13375
- Su YC, Lee WC, Wang CC, Yeh SA, Chen WH, Chen PJ. Targeting PI3K/AKT/mTOR Signaling Pathway as a Radiosensitization in Head and Neck Squamous Cell Carcinomas. Int J Mol Sci. 2022;23(24):15749. doi: 10.3390/ijms232415749
- Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells. Sci Rep. 2020;10(1):16208. doi: 10.1038/s41598-020-73249-z
- Lee KS, Lee DH, Chun SY, Nam KS. Metastatic potential in MDA-MB‑231 human breast cancer cells is inhibited by proton beam irradiation via the Akt/nuclear factor-κB signaling pathway. Mol Med Rep. 2014;10(2):1007–12. doi: 10.3892/mmr.2014.2259
- Bravatà V, Tinganelli W, Cammarata FP, Minafra L, Calvaruso M, Sokol O, Petringa G, Cirrone GAP, Scifoni E, Forte GI, Russo G. Hypoxia Transcriptomic Modifications Induced by Proton Irradiation in U87 Glioblastoma Multiforme Cell Line. J Pers Med. 2021;11(4):308. doi: 10.3390/jpm11040308
- Geiger JL, Grandis JR, Bauman JE. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol. 2016;56:84–92. doi: 10.1016/j.oraloncology.2015.11.022
- Avalle L, Camporeale A, Morciano G, Caroccia N, Ghetti E, Orecchia V, Viavattene D, Giorgi C, Pinton P, Poli V. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca2+ fluxes and apoptotic responses. Cell Death Differ. 2019;26(5):932–942. doi: 10.1038/s41418-018-0171-y
- Bu LL, Yu GT, Wu L, Mao L, Deng WW, Liu JF, Kulkarni AB, Zhang WF, Zhang L, Sun ZJ. STAT3 Induces Immunosuppression by Upregulating PD‑1/PD-L1 in HNSCC. J Dent Res. 2017;96(9):1027–1034. doi: 10.1177/0022034517712435
- Albesiano E, Davis M, See AP, Han JE, Lim M, Pardoll DM, Kim Y. Immunologic consequences of signal transducers and activators of transcription 3 activation in human squamous cell carcinoma. Cancer Res. 2010;70(16):6467–76. doi: 10.1158/0008-5472.CAN-09-4058
- Koppikar P, Lui VW, Man D, Xi S, Chai RL, Nelson E, Tobey AB, Grandis JR. Constitutive activation of signal transducer and activator of transcription 5 contributes to tumor growth, epithelial-mesenchymal transition, and resistance to epidermal growth factor receptor targeting. Clin Cancer Res. 2008;14(23):7682–90. doi: 10.1158/1078-0432.CCR-08-1328
- Jumaniyazova ED, Vishnyakova PA, Chirkova MV, Karpulevich EA, Eremina IZ, Gordon KB, Kaprin AD, Fatkhudinov TH. Study of head and neck squamous cell carcinoma transcriptome after proton therapy. Bull Siberian Med. 2024;1(23):37–47. doi: 10.20538/1682-0363-2024-1-37-47
- 82. Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells. 2020;9(1):198. doi: 10.3390/cells9010198
- Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK Network as a Therapeutic Target in Human Cancer. Mol Cancer Res. 2021;19(3):361–374. doi: 10.1158/1541-7786.MCR-20-0687
- Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov. 2014;13(12):928–42. doi: 10.1038/nrd4281
- Ngan HL, Liu Y, Fong AY, Poon PHY, Yeung CK, Chan SSM, Lau A, Piao W, Li H, Tse JSW, Lo KW, Chan SM, Su YX, Chan JYK, Lau CW, Mills GB, Grandis JR, Lui VWY. MAPK pathway mutations in head and neck cancer affect immune microenvironments and ErbB3 signaling. Life Sci Alliance. 2020;3(6): e201900545. doi: 10.26508/lsa.201900545
- Zhang L, MacIsaac KD, Zhou T, Huang PY, Xin C, Dobson JR, Yu K, Chiang DY, Fan Y, Pelletier M, Wang Y, Jaeger S, Krishnamurthy Radhakrishnan V, JeBailey L, Skewes-Cox P, Zhang J, Fang W, Huang Y, Zhao H, Zhao Y, Li E, Peng B, Huang A, Dranoff G, Hammerman PS, Engelman J, Bitter H, Zeng YX, Yao Y. Genomic Analysis of Nasopharyngeal Carcinoma Reveals TME-Based Subtypes. Mol Cancer Res. 2017;15(12):1722–1732. doi: 10.1158/1541-7786.MCR-17-0134
- Theocharis S, Kotta-Loizou I, Klijanienko J, Giaginis C, Alexandrou P, Dana E, Rodriguez J, Patsouris E, Sastre-Garau X. Extracellular signal-regulated kinase (ERK) expression and activation in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. Tumour Biol. 2014;35(7):6455–65. doi: 10.1007/s13277-014-1853-9
- Li Z, Li N, Shen L. MAP2K6 is associated with radiation resistance and adverse prognosis for locally advanced nasopharyngeal carcinoma patients. Cancer Manag Res. 2018;10:6905–6912. doi: 10.2147/CMAR.S184689
- Meerz A, Deville SS, Müller J, Cordes N. Comparative Therapeutic Exploitability of Acute Adaptation Mechanisms to Photon and Proton Irradiation in 3D Head and Neck Squamous Cell Carcinoma Cell Cultures. Cancers (Basel). 2021;13(6):1190. doi: 10.3390/cancers13061190
- Ha BG, Park JE, Cho HJ, Lim YB, Shon YH. Inhibitory effects of proton beam irradiation on integrin expression and signaling pathway in human colon carcinoma HT29 cells. Int J Oncol. 2015;46(6):2621–8. doi: 10.3892/ijo.2015.2942
- Fukusumi T, Califano JA. The NOTCH Pathway in Head and Neck Squamous Cell Carcinoma. J Dent Res. 2018;97(6):645–653. doi: 10.1177/0022034518760297
- Nowell CS, Radtke F. Notch as a tumour suppressor. Nat Rev Cancer. 2017;17(3):145–159. doi: 10.1038/nrc.2016.145
- Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, Correia AS, Soulet D, Major T, Menon J, Tabar V. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 2010;28(6):1019–29. doi: 10.1002/stem.429
- Yahyanejad S, Theys J, Vooijs M. Targeting Notch to overcome radiation resistance. Oncotarget. 2016;7(7):7610–28. doi: 10.18632/oncotarget.6714
- Kumar V, Vashishta M, Kong L, Lu JJ, Wu X, Dwarakanath BS, Guha C. Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation. Cells. 2022;11(21):3354. doi: 10.3390/cells11213354
- Cammarata FP, Torrisi F, Vicario N, Bravatà V, Stefano A, Salvatorelli L, D’Aprile S, Giustetto P, Forte GI, Minafra L, Calvaruso M, Richiusa S, Cirrone GAP, Petringa G, Broggi G, Cosentino S, Scopelliti F, Magro G, Porro D, Libra M, Ippolito M, Russo G, Parenti R, Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol. 2023;6(1):388. doi: 10.1038/s42003-023-04770-w
- Demoulin JB, Essaghir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev. 2014;25(3):273–83. doi: 10.1016/j.cytogfr.2014.03.003
- Lin LH, Lin JS, Yang CC, Cheng HW, Chang KW, Liu CJ. Overexpression of Platelet-Derived Growth Factor and Its Receptor Are Correlated with Oral Tumorigenesis and Poor Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci. 2020;21(7):2360. doi: 10.3390/ijms21072360
- Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal. 2013;11:97. doi: 10.1186/1478-811X-11-97
- Farooqi AA, Siddik ZH. Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct. 2015;33(5):257–65. doi: 10.1002/cbf.3120
- Pietras K, Sjöblom T, Rubin K, Heldin CH, Ostman A. PDGF receptors as cancer drug targets. Cancer Cell. 2003;3(5):439–43. doi: 10.1016/s1535-6108(03)00089-8
- Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5. doi: 10.1126/science.277.5323.242
- Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother. 2023;161:114491. doi: 10.1016/j.biopha.2023.114491
- Kondratyuk RB, Grekov IS, Seleznev EA. Microenvironment influence on the development of epithelial-mesenchymal transformation in lung cancer. RUDN Journal of Medicine. 2022;26(3):325–337. doi: 10.22363/2313-0245-2022-26-3-325-337
- Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–13. doi: 10.1038/nrc1456
- Aebersold DM, Froehlich SC, Jonczy M, Beer KT, Laissue J, Greiner RH, Djonov V. Expression of transforming growth factor-alpha, epidermal growth factor receptor and platelet-derived growth factors A and B in oropharyngeal cancers treated by curative radiation therapy. Radiother Oncol. 2002;63(3):275–83. doi: 10.1016/s0167-8140(02)00131-7
- Han Y, Liu D, Li L. PD‑1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–742
- Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD‑1 and PD-L1 pathway. Trends Mol Med. 2015;21(1):24–33. doi: 10.1016/j.molmed.2014.10.009
- Qiao XW, Jiang J, Pang X, Huang MC, Tang YJ, Liang XH, Tang YL. The Evolving Landscape of PD‑1/PD-L1 Pathway in Head and Neck Cancer. Front Immunol. 2020;11:1721. doi: 10.3389/fimmu.2020.01721
- Chen TC, Wu CT, Wang CP, Hsu WL, Yang TL, Lou PJ, Ko JY, Chang YL. Associations among pretreatment tumor necrosis and the expression of HIF‑1α and PD-L1 in advanced oral squamous cell carcinoma and the prognostic impact thereof. Oral Oncol. 2015;51(11):1004–1010. doi: 10.1016/j.oraloncology.2015.08.011
- Scognamiglio T, Chen YT. Beyond the Percentages of PD-L1-Positive Tumor Cells: Induced Versus Constitutive PD-L1 Expression in Primary and Metastatic Head and Neck Squamous Cell Carcinoma. Head Neck Pathol. 2018;12(2):221–229. doi: 10.1007/s12105-017-0857-3
- Kwon MJ, Rho YS, Nam ES, Cho SJ, Park HR, Min SK, Seo J, Choe JY, Kim ES, Park B, Hong M, Min KW. Clinical implication of programmed cell death‑1 ligand‑1 expression in tonsillar squamous cell carcinoma in association with intratumoral heterogeneity, human papillomavirus, and epithelial-to-mesenchymal transition. Hum Pathol. 2018;80:28–39. doi: 10.1016/j.humpath.2018.03.025
- Yang WF, Wong MCM, Thomson PJ, Li KY, Su YX. The prognostic role of PD-L1 expression for survival in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 2018;86:81–90. doi: 10.1016/j.oraloncology.2018.09.016
- Du J, Kageyama SI, Hirata H, Motegi A, Nakamura M, Hirano Y, Okumura M, Yamashita R, Tsuchihara K, Hojo H, Hirayama R, Akimoto T. Comparative analysis of the immune responses in cancer cells irradiated with X-ray, proton and carbon-ion beams. Biochem Biophys Res Commun. 2021;585:55–60. doi: 10.1016/j.bbrc.2021.11.004
- Ko EC, Formenti SC. Radiation therapy to enhance tumor immunotherapy: a novel application for an established modality. Int J Radiat Biol. 2019;95(7):936–939. doi: 10.1080/09553002.2019.1623429
- Rykkelid AM, Sinha PM, Folefac CA, Horsman MR, Sørensen BS, Søland TM, Schreurs OJF, Malinen E, Edin NFJ. Combination of proton- or X-irradiation with anti-PDL1 immunotherapy in two murine oral cancers. Sci Rep. 2024;14(1):11569. doi: 10.1038/s41598-024-62272-z