Биомаркеры в диагностике нейродегенеративных заболеваний

Обложка

Цитировать

Полный текст

Аннотация

Биомаркеры представляют собой молекулы, являющиеся индикаторами биологических состояний. В идеале они должны иметь высокую чувствительность, специфичность и точность в отражении общего бремени болезни. В обзоре обсуждается текущее состояние биомаркеров, используемых при неврологических расстройствах. Нейродегенеративные заболевания представляют собой гетерогенную группу заболеваний, характеризующихся прогрессирующей потерей структуры и функции центральной нервной системы или периферической нервной системы. В обзоре обсуждаются основные биомаркеры, которые имеют прогностическую ценность для описания клинической этиологии, патофизиологии и стратегий вмешательств. Точность и надежность являются одним из важных требований к хорошему биомаркеру. В результате анализа литературных данных выявлено, что бета-амилоид, общий тау белок и его фосфорилированные формы являются первыми биохимическими биомаркерами нейродегенеративных заболеваний, измеряемыми в спинномозговой жидкости, но выявление этих маркеров возможно с помощью инвазивной люмбальной пункции, и является обременительным процессом для пациентов. Среди различных биомаркеров нейродегенеративных заболеваний, особое внимание уделяется микроРНК. МикроРНК - важные биомаркеры при многих болезненных состояниях, включая нейродегенеративные расстройства, являются многообещающими кандидатами, которые могут привести к выявлению новых терапевтических мишеней. Выводы. Биомаркеры неврологических заболеваний присутствуют в оптимальном количестве в спинномозговой жидкости, но также присутствуют в крови в небольших количествах. Полученные данные выявляют прогностическую ценность молекулярной диагностики нейродегенеративных расстройств и необходимость более широкого ее использования.

Об авторах

С. С. Хак

Институт медицинских наук имени Индиры Ганди

Автор, ответственный за переписку.
Email: sshaq2002@yahoo.co.in
ORCID iD: 0000-0002-8582-2702
г. Патна, Бихар, Индия

Список литературы

  1. Jain KK. Biomarker in Neurology. General neurology. 2017;88(6):595-602.
  2. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: A new source of biomarkers. Mutat. Res. 2011;717:85-90.
  3. Shi M, Caudle WM, Zhang J Biomarker discovery in neurodegenerative diseases: A proteomic approach. Neurobiol Dis. 2009; 35:157-164.
  4. Yin GN, Lee HW, Cho JY, Suk K Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res. 2009;265: 58-170.
  5. Roozendaal B, Kim S, Wolf OT, Kim MS, Sung KK. The cortisol awakening response in amyotrophic lateral sclerosis is blunted and correlates with clinical status and depressive mood. Psychoneuroendocrinology. 2012;37(1):20-26. doi: 10.1016/j.psyneuen.2011.04.013
  6. Shirbin CA, Chua P, Churchyard A, Hannan AJ, Lowndes G. The relationship between cortisol and verbal memory in the early stages of Huntington’s disease. J Neurol. 2013;260: 891-902.
  7. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36: 601-607.
  8. Shaw LM, Korecka M, Clark CM, Lee VM-Y, Trojanowski JQ. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov. 2007;6:295-303.
  9. Berg D. Biomarkers for the Early Detection of Parkinson’s and Alzheimer’s disease. Neurodegener Dis. 2008;5:133-136.
  10. Spitzer P, Klafki HW, Blennow K, Buée L, Esselmann H. cNEUPRO: Novel Biomarkers for Neurodegenerative Diseases. Int J Alzheimers Dis. 2010:548145. doi: 10.4061/2010/548145
  11. Laske C, Stransky E, Fritsche A, Eschweiler GW, Leyhe T. Inverse association of cortisol serum levels with T-tau, P-tau 181 and P-tau 231 peptide levels and T-tau/Abeta 1-42 ratios in CSF in patients with mild Alzheimer’s disease dementia. Eur Arch Psychiatry Clin Neurosci. 2009;259:80-85.
  12. Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC. Blood based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol. 2012;69:1318-1325.
  13. Toledo JB, Toledo E, Weiner MW, Jack Jr. CR, Jagusti W. Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer’s disease. Neuroimaging Initiative. Alzheimers Dement. 2012;8:483-489.
  14. Wolkowitz OM, Reus VI. Treatment of depression with antiglucocorticoid drugs. Psychosom. Med. 1999;61:698-711.
  15. McEwen BS. The neurobiology of stress: From serendipity to clinical relevance. Brain Research. 2000;886(1-2):172-189.
  16. Corticosteroids effects in the brain: U-shape it. Trends pharma Sci. 2002;27:244-250.
  17. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics. 2007;90(3):397-406. doi: 10.1016/j.ygeno.2007.05.004
  18. Bothwell M. Functional interactions of neurotrophins and neurotrophins receptors. Annu Rev Neurosci. 1995;18:223-53.
  19. Klien R, Conway D, Parada LF, Barbacid M. The trkB tyrosine kinase gene codes for a second nuerogenic receptor that lacks catalytic domain. Cell. 1990;61:647-56.
  20. Klien R, Nanduri V, Jing SA, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and NT-3. Cell. 1991;66:395-403.
  21. Alderson RF, Alterman AL, Barde YA, Lindsay RM. Brain derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron. 1990;5:297-306. doi: 10.1016/0896-6273(90)90166-D
  22. Rylett RJ, Williams LR. Role of neurotrophins in cholinergic neuron function in the adult and aged CNS. Trends Neurosci. 1994: 17,486-90. doi: 10.1016/0166-2236(94)90138-4
  23. Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression and antidepressant medications: meta-analyses and implications. Biol Psychiatry. 2008;64:527-532.
  24. Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry. 2014;19(7):791-800. doi: 10.1038/mp.2013.105
  25. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry. 2011;16(9):960-72. doi: 10.1038/mp.2010.88
  26. Fernandes BS, Gama CS, Ceresér KM, Yatham LN, Fries GR, Colpo G, de Lucena D, Kunz M, Gomes FA, Kapczinski F. Brainderived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis. J Psychiatr Res. 2011;45(8):995-1004. doi: 10.1016/j.jpsychires.2011.03.002
  27. Hashimoto K. Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:1529-1531.
  28. Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, Kumagai T, Tsuzuki M, Shigemi K, Yoshida F, Nakayama A. Agerelated changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Dev Neurosci. 2007t;25(6):367-72. doi: 10.1016/j.ijdevneu.2007.07.002
  29. Zhang HT, Li LY, Zou XL. The immunohistochemical distribution of NGF, BDNF, NT-3, NT-4 in the brains of adult Rhesus monkeys. J Histochem Cytochem. 2007;55:1-19.
  30. Kizawa-Ueda M. Neurotrophin levels in cerebrospinal fluid of adult patients with meningitis and encephalitis. Eur. Neurol. 2011;65:138-143.
  31. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81(2):89-131.
  32. Baslow MH, Suckow RF, Sapirstein V, Hungund BL. Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes. J Mol Neurosci. 1999;13(1-2):47-53.
  33. Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci. 1998;20(4-5):271-276.
  34. Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci. 1998;20:271-6. doi: 10.1159/000017321
  35. Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW. Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J. Neurochem. 2001;78:736-45. doi: 10.1046/j.1471-4159.2001.00456.x
  36. D’Adamo AF Jr, Yatsu FM. Acetate metabolism in the nervous system. N-acetyl-L-aspartic acid and the biosynthesis of brain lipids. J Neurochem. 1966;13:961-5. doi: 10.1111/j.1471-4159.1966.tb10292.x
  37. Baslow MH. N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res. 2003;28(6):941-953.
  38. Bush AI, Martins RN, Rumble B, Moir R, Fuller S, Milward E. The amyloid precursor protein of Alzheimer’s disease is released by human platelets. J Biol Chem. 1990;265:15977-83.
  39. Borroni B, Colciaghi F, Corsini P, Akkawi N, Rozzini L, Del Zotto E. Early stages of probable Alzheimer disease are associated with changes in platelet amyloid precursor protein forms. Neurol Sci. 2002;23:207-10. doi: 10.1007/s100720200042
  40. Padovani A, Borroni B, Colciaghi F, Pettenati C, Cottini E, Agosti C, et al. Abnormalities in the pattern of platelet amyloid precursor protein forms in patients with mild cognitive impairment and Alzheimer disease. Arch Neurol. 2002;59:71-5.
  41. Kelley RI, Stamas JN. Quantification of N-acetyl-L-aspartic acid in urine by isotope dilution gas chromatography-mass spectrometry. J Inherit Metab Dis. 1992;15(1):97-104.
  42. Hagenfeldt L, Bollgren I, Venizelos N. N-acetylaspartic aciduria due to aspartoacylase deficiency: a new aetiology of childhood leukodystrophy. J Inherit Metab Dis. 1987;10(2):135-141.
  43. Sijens PE, Oudkerk M, de Leeuw FE. 1 H chemical shift imaging of the human brain at age 60-90 years reveals metabolic differences between women and men. Magn Reson Med. 1999;42(1):24-31.
  44. Charles HC, Lazeyras F, Krishnan KR. Proton spectroscopy of human brain: effects of age and sex. Prog Neuropsychopharmacol Biol Psychiatry. 1994;18(6):995-1004.
  45. Jaarsma D, Veenma-van der Duin L, Korf J. N-acetylaspartate and Nacetylaspartylglutamate levels in Alzheimer’s disease post-mortem brain tissue. J Neurol Sci. 1994;127(2):230-233.
  46. Schuff N, Capizzano AA, Du AT. Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology. 2002;58(6):928-935.
  47. Federico F, Simone IL, Lucivero V. Proton magnetic resonance spectroscopy in Parkinson’s disease and atypical parkinsonian disorders. Mov Disord. 1997;12(6):903-909.
  48. Simone IL, Tortorella C, Federico F. Axonal damage in multiple sclerosis plaques: a combined magnetic resonance imaging and 1 H-magnetic resonance spectroscopy study. J Neurol Sci. 2001;182(2):143-150.
  49. Rooney WD, Miller RG, Gelinas D, Schuff N, Maudsley AA, Weiner MW. DecreasedN-acetylaspartate in motor cortex and corticospinal tract in ALS. Neurology. 1998;50(6):1800-1805.
  50. Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, Horsfield MA, Williams SC, Leigh PN. Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology. 1999;53(5):1051-8. doi: 10.1212/wnl.53.5.1051
  51. Sarchielli P, Pelliccioli GP, Tarducci R. Magnetic resonance imaging and 1 H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. Neuroradiology. 2001;43(3):189-197.
  52. Sivak S, Bittsansky M, Kurca E. Proton magnetic resonance spectroscopy in patients with early stages of amyotrophic lateral sclerosis. Neuroradiology. 2010;52(12):1079-1085.
  53. Pepys MB, Booth DR, Hutchinson WL, Gallimore JR, Collins PM, Hohenester E. Amyloid P component. A critical review. Amyloid. 1997;4:274-95. doi: 10.3109/13506129709003838
  54. Emsley J, White HE, O’Hara BP, Oliva G, Srinivasan N, Tickle IJ. Structure of pentameric human serum amyloid P component. Nature. 1994;367:338-45. 10.1038/367338a0
  55. Shrive AK, Cheetham GM, Holden D, Myles DA, Turnell WG, Volanakis JE. Three dimensional structure of human C-reactive protein. Nat Struct Biol. 1996;3:346-54. 10.1038/nsb0496-346
  56. Pepys MB, Dyck RF, de Beer FC, Skinner M, Cohen AS. Binding of serum amyloid P-component (SAP) by amyloid fibrils. Clin ExpImmunol. 1979: 38:284-93.
  57. Hamazaki H. Ca(2+)-dependent binding of human serum amyloid P component to Alzheimer’s beta-amyloid peptide. J Biol Chem. 1995: 270:10392-4. 10.1074/jbc.270.18.10392
  58. Bharadwaj D, Mold C, Markham E, Du Clos TW. Serum amyloid P component binds to Fc gamma receptors and opsonizes particles for phagocytosis. J Immunol. 2001: 166:6735-41. 10.4049/jimmunol.166.11.6735
  59. Laske C, Stransky E, Leyhe T, Eschweiler GW, Maetzler W, Wittorf A, Soekadar S, Richartz E, Koehler N, Bartels M, Buchkremer G, Schott K. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res. 2007;41(5):387-94. doi: 10.1016/j.jpsychires.2006.01.014
  60. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M.S. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535-539. doi: 10.1038/416535a
  61. Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V. Galanin - a novel biologically active peptide from porcine intestine. FEBS Lett. 1983;164:124-128. doi: 10.1016/0014-5793(83)80033-7
  62. Merchenthaler I, Lopez F J, Negro-Vilar A. Anatomy and physiology of central galanine containing pathways. Prog Neurobiol. 1993;40(6):711-769.
  63. Kakuyama H, Kuwahara A, Mochizuki T, Hoshino M, Yanaihara N. Role of N-terminal active sites of galanin in neurally evoked circular muscle contractions in the guinea-pig ileum. Eur. J. Pharmacol. 1997;329:85-91.
  64. Land T, Langel Ü, Bartfai T. Hypothalamic degradation of galanin(1-29) and galanin(1-16): identification and characterization of the peptidolytic products. Brain Res. 1991;558:245-250.
  65. Bedecs K, Langel Ü, Bartfai T. Metabolism of galanin and galanin (1-16) in isolated cerebrospinal fluid and spinal cord membranes from rat. Neuropeptides 1995;29:137-143.
  66. Šípková J, Kramáriková I, Hynie S, Klenerová V. The galanin and galanin receptor subtypes, its regulatory role in the biological and pathological functions. Physiol Res. 2017;66(5):729-40.
  67. Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, Wendschlag A, Giese N, Tjaden C, Ott K, et al. Toward the bloodborne miRNome of human diseases. Nat. Methods. 2011;8:841-843.
  68. Kosik K.S. The neuronal microRNA system. Nature Reviews Neuroscience. 2006;7(12):911-920.
  69. Salta E, De Strooper B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol. 2012;11(2):189-200.
  70. Dorval V, Nelson PT, Hébert SS. Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers. Front Mol Neurosci. 2013;6:24.
  71. Sheinerman KS, Umansky SR. Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies. Front Cell Neurosci. 2013;7:150.
  72. Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One. 2013;8(7): e69807
  73. Bhatnagar S, Chertkow H, Schipper HM, Yuan Z, Shetty V, Jenkins S, et al. Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma. Front Mol Neurosci. 2014;7:2.
  74. Takahashi I, Hama Y, Matsushima M, Hirotani M, Kano T, Hohzen H. Identification of plasma microRNAs as a biomarker of sporadic amyotrophic lateral sclerosis. Mol Brain. 2015;8(1):67.
  75. Mushtaq G, Greig NH, Anwar F, Zamzami MA, Choudhry H, Shaik MM. miRNAs as circulating biomarkers for Alzheimer’s disease and Parkinson’s disease. Med Chem. 2016;12(3):217-25.
  76. Yoon H, Flores LF, Kim J. MicroRNAs in brain cholesterol metabolism and their implications for Alzheimer’s disease. Biochim Biophys Acta. 2016;1861(12 Pt B):2139-47.
  77. Wu HZ, Ong KL, Seeher K, Armstrong NJ, Thalamuthu A, Brodaty H. Circulating microRNAs as biomarkers of Alzheimer’s disease: a systematic review. J Alzheimers Dis. 2016;49:755-66.
  78. Zhang X, Yang R, Hu BL, Lu P, Zhou LL, He ZY. Reduced circulating levels of miR-433 and miR-133b are potential biomarkers for Parkinson’s disease. Front Cell Neurosci. 2017;11:170.
  79. Lusardi TA, Phillips JI, Wiedrick JT, Harrington CA, Lind B, Lapidus JA. MicroRNAs in human cerebrospinal fluid as biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2017;55:1223-33.
  80. Nagaraj S, Laskowska-Kaszub K, Dębski KJ, Wojsiat J, Dąbrowski M, Gabryelewicz T, et al. Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer’s disease patients from non-demented subjects. Oncotarget. 2017; 8:16122-43.
  81. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215-33.
  82. Hua YJ, Tang ZY, Tu K, Zhu L, Li YX, Xie L. Identification and target prediction of miRNAs specifically expressed in rat neural tissue. BMC Genomics. 2009;10:214.
  83. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166.
  84. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401-14
  85. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA. 2008;14(1):35-42.
  86. Guo Z, Maki M, Ding R, Yang Y, Zhang B, Xiong L. Genomewide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci Rep. 2014;4:5150. doi: 10.1038/srep05150.
  87. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stähler C, Meese E, Keller A. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8):3865-77. doi: 10.1093/nar/gkw116.
  88. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439(7074):283-9. doi: 10.1038/nature04367.
  89. Kye MJ, Liu T, Levy SF, Xu NL, Groves BB, Bonneau R, Lao K, Kosik KS. Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA. 2007;13(8):1224-34. doi: 10.1261/rna.480407.
  90. Lugli G, Torvik VI, Larson J, Smalheiser NR. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem. 2008;106(2):650-61.
  91. Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonné R, Filipowicz W, Bertrand E, et al. Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci. 2008;28(51):13793-804.
  92. Schratt G. microRNAs at the synapse. Nat Rev Neurosci. 2009;10(12):842-9.
  93. Bicker S, Lackinger M, Weiß K, Schratt G. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci. 2014;71(20):3987-4005.
  94. Smalheiser NR. The RNA-centred view of the synapse: noncoding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci. 201426;369(1652):20130504. doi: 10.1098/rstb.2013.0504
  95. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34: D 140-4.
  96. Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 2010;5(10): e13515.
  97. Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9(6):850-9.
  98. Hoy AM, Buck AH. Extracellular small RNAs: what, where, why? Biochem Soc Trans. 2012;40(4):886-90.
  99. Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, Shill H, Adler C, Sabbagh M, Villa S, Tembe W, Craig D, Van Keuren-Jensen K. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One. 2014;9(5): e94839. doi: 10.1371/journal.pone.0094839.

© Хак С.С., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах