The Mediterranean Sea Basin as a Single Ecosystem: Problems and Prospects for International Cooperation

封面

如何引用文章

详细

The article justifies that the Mediterranean Basin in the broad sense (Mediterranean, Black, Azov and Marmara Seas) is a single ecosystem. The state of this ecosystem is affected by the rivers of this water intake basin, among them - the Nile, Tiber, Po, Rhone, Ebro, Danube, Don and others. The interconnection of the individual elements of the ecosystem is ensured through active water exchange and a sufficiently branched system of currents that turn the inland seas of the Mediterranean basin into communicating vessels. The paper analyzes the main anthropogenic factors, as well as the influence of climate changes on the ecological condition of the Mediterranean ecosystem. Within the framework of anthropogenic impact, special attention is paid to the negative impact of urbanization, the oil industry (production, transportation and oil refining), industrial and agricultural waste, as well as runoff waters. The problem of plastic, as well as contamination with dichlorodiphenyltrichloroethane (DDT) is discussed in detail. Analysis of DDT accumulations in the bottom sediments of the Mediterranean basin makes it possible to study the synchronization of anthropogenic processes and their long-term nature. Aridization (intensification of droughts) in the Mediterranean is shown as an important problem for the regional ecology, not directly related to the anthropogenic factor. The article reveals the disastrous effects of increasing droughts and climate change on Mediterranean basin countries. International cooperation to regulate transboundary environmental problems in the region is associated with a number of problems. Among them is the delimitation of sea zones between countries, first of all - the territorial claims of Turkey in the Eastern Mediterranean. The problem of the shelf around the Serpents’ Island in the Black Sea is also considered, as well as territorial disputes in the Western Mediterranean (France/Spain). The paper widely presents successful cases of cross-boundary cooperation: the 1976 RAMOGE Agreement, the 1975 Mediterranean Action Plan and the 1995 Barcelona Convention, as well as its seven protocols. The cases of PEGASO and 4GreenInn projects, as well as the BSEC environmental projects, are considered as successful examples of cross-border academic cooperation. Promising areas of cooperation are outlined and the conclusion is made about the importance of transboundary environmental risk management, despite the political differences between the Mediterranean countries and the EU sanctions restrictions on Russia after 2014.

作者简介

Victor Egorov

A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: egorov.ibss@yandex.ru
ORCID iD: 0000-0002-4233-3212

Russian Academy of Sciences member, PhD, Dr. of Sc. (Biology), Professor, Scientific Director

Moscow, Russian Federation

Ludmila Malakhova

A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: malakh2003@list.ru
ORCID iD: 0000-0001-8810-7264

PhD in Biology, Leading Researcher, Department of Radiation and Chemical Biology

Moscow, Russian Federation

Andrey Degterev

Sevastopol State University

Email: degsebal@mail.ru
ORCID iD: 0000-0003-0170-6390

PhD, Dr. of Sc. (Physics and Mathematics), Professor, Department of Radioecology and Environmental Safety, Institute of Nuclear Energy and Industry

Sevastopol, Russian Federation

Mikhail Yurlov

Fond “Sevastopol”

Email: ymission@mail.ru

PhD in Law, Executive Director

Sevastopol, Russian Federation

参考

  1. Abd-Allah, A. M., & Abbas, M. M. (1992). Residue level of organochlorine pollutants in the Alexandria Region, Egypt. Toxicological and Environmental Chemistry, 41(3-4), 239-247. https://doi.org/10.1080/ 02772249409357979
  2. Aghazada, M. M. (2021). Greater Mediterranean regional security complex: Myth or reality? Vestnik RUDN. International Relations, 21(3), 429-440. (In Russian). https://doi.org/10.22363/2313-0660-2021-21-3-429-440
  3. Barakat, A. O., Moonkoo, K., Yoarong, Q., & Wade, T. L. (2002). Organochlorine pesticides and PCB residues in sediments of Alexandria Harbour, Egypt. Marine Pollution Bulletin, 44(12), 1426-1434. https://doi.org/10.1016/s0025-326x(02)00313-2
  4. Beard, J. (2006). DDT and human health. Science of the Total Environment, 355(1-3), 78-89. https://doi.org/10.1016/j.scitotenv.2005.02.022
  5. Bertolotto, R. M, Magherini, A., Frignani, M., Bellucci, L. G., Alvarado-Aguilar, D., Cuneo, C., & Albanese, S. (2004). Polychlorinated biphenyls and pesticides in surficial coastal sediments of the Ligurian Sea. Organohalogen Compounds, (66), 1379-1385
  6. Berzi, M., & Ariza, E. (2018). A local transboundary approach to the governance of Mediterranean coastal borderlands. Coastal Management, 46(5), 471-487. https://doi.org/10.1080/08920753.2018.1498713
  7. Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M., & Cook, E. R. (2016). Spatiotemporal drought variability in the Mediterranean over the last 900 years. Journal of Geophysical Research: Atmospheres, 121(5), 2060-2074. https://doi.org/10.1002/2015JD023929
  8. Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45-65. https://doi.org/10.1002/wcc.81
  9. De Châtel, F. (2014). The role of drought and climate change in the Syrian uprising: Untangling the triggers of the revolution. Middle Eastern Studies, 50(4), 521-535. https://doi.org/10.1080/00263206.2013.850076
  10. De Lazzari, A., Rampazzo, G., & Pavoni, B. (2004). Geochemistry of sediments in the Northern and Central Adriatic Sea. Estuarine, Coastal and Shelf Science, 59(3), 429-440. https://doi.org/10.1016/j.ecss. 2003.10.003
  11. El Nemr, A., & El-Sadaawy, M. M. (2016). Polychlorinated biphenyl and organochlorine pesticide residues in surface sediments from the Mediterranean Sea (Egypt). International Journal of Sediment Research, 31(1), 44-52. https://doi.org/10.1016/j.ijsrc.2013.03.001
  12. Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., & Ulbrich, U. (2004). The 2003 European summer heatwaves and drought-synoptic diagnosis and impacts. Weather, 59(8), 209-216. https://doi.org/10.1256/wea.73.04
  13. Galanopoulou, S., Vgenopoulos, A., & Conispoliatis, N. (2005). DDTs and other chlorinated organic pesticides and polychlorinated biphenyls pollution in the surface sediments of Keratsini harbour, Saronikos gulf, Greece. Marine Pollution Bulletin, 50(5), 520-525. https://doi.org/10.1016/j.marpolbul.2004.11.043
  14. Gudev, P. A. (2021). Foundations of Turkish сlaims in the Eastern Mediterranean. Vestnik RUDN. International Relations, 21(3), 472-486. (In Russian). https://doi.org/10.22363/2313-0660-2021-21-3-472-486
  15. Irkhin, A., & Moskalenko, O. (2020). Russia’s foreign policy in the Great Mediterranean: Prospects and constraints. Geopolitics Quarterly, 15(4), 110-121.
  16. Johnstone, S., & Mazo, J. (2011). Global warming and the Arab Spring. Survival, 53(2), 11-17. https://doi.org/10.1080/00396338.2011.571006
  17. Kucuksezgin, F., Pazi, I., Gonul, L. T., & Duman, M. (2016). Organochlorine compounds in surface sediments from the northern coast of Cyprus, Eastern Mediterranean: Levels, possible sources and potential risk. Marine Pollution Bulletin, 109(1), 591-596. https://doi.org/10.1016/j.marpolbul.2016.05.034
  18. Lelekis, J., Petalas, S., Hatzianestis, I., & Sklivagou, E. (2001). Determination of anthropogenic organic compounds in the sediments of a deltaic-coastal area. The case of Igoumenitsa Gulf and Kalamas river. 7th International Conference on Environmental Science and Technology, 3-6 September, Syros, Greece: proceedings, 2, 1211-1217
  19. Li, Y. F., & Macdonald, R. W. (2005). Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: A review. The Science of the Total Environment, 342(1-3), 87-106. https://doi.org/10.1016/j.scitotenv.2004.12.027
  20. Mandavilli, A. (2006). Health agency backs use of DDT against malaria. Nature, 443, 250-251. https://doi.org/10.1038/443250b
  21. Milano, M., Ruelland, D., Fernandez, S., Dezetter, A., Fabre, J. et al. (2013). Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrological Sciences Journal, 58(3), 498-518. https://doi.org/10.1080/02626667.2013.774458
  22. Pascual, M., Rives, B., Schunter, C., & Macpherson, E. (2017). Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE, 12(05), 1-20. https://doi.org/10.1371/journal.pone.0176419
  23. Picer, M. (2000). DDTs and PCBs in the Adriatic Sea. Croatica Chemica Acta, 73(1), 123-186
  24. Ranson, H., N’Guessan, R., Lines, J., Moiroux, N., Nkuni, Z., & Corbel, V. (2011). Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends Parasitol, 27(2), 91-98. https://doi.org/10.1016/j.pt.2010.08.004
  25. Rodrigo-Comino, J., Salvia, R., Quaranta, G., Cudlín, P., Salvati, L., & Gimenez-Morera, A. (2021). Climate aridity and the geographical shift of olive trees in a Mediterranean Northern region. Climate, 9(64), 1-17. https://doi.org/10.3390/cli9040064
  26. Schofield, C., & Prescott, V. (2005). The Maritime political boundaries of the world. Leiden: Martinus Nijhoff Publishers
  27. Tolosa, I., Bayona, J., & Albaiges, J. (1995). Spatial and temporal distribution, fluxes and budgets of organochlorinated compounds in Northwest Mediterranean sediments. Environmental Science and Technology, 29(10), 2519-2527. https://doi.org/10.1021/es00010a010
  28. Xu, Y. Y., Wang, Y. H., Li, J., Liu, X., Zhang, R. J. et al. (2013). Distributions, possible sources and biological risk of DDTs, HCHs and chlordanes in sediments of Beibu Gulf and its tributary rivers, China. Marine Pollution Bulletin, 76(1-2), 52-60. https://doi.org/10.1016/j.marpolbul.2013.09.032

补充文件

没有额外的文件显示


版权所有 © Egorov V.N., Malakhova L.V., Degterev A.K., Yurlov M.N., 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。

##common.cookie##