Investigation of a mathematical model of a bio-artificial liver using a PID-controller

Abstract

The objective of this study is to develop and analyze a mathematical model of a bio-artificial liver using proportional-integral-differential a controller for managing key processes. The bio-artificial liver is a complex system that performs the fundamental functions of the liver, which is of critical importance for the development of alternative treatments for patients with liver failure. The paper describes the structure and functionality of the bio-artificial liver model, based on a review of the anatomy of the human liver, as well as on the study of bio-technological aspects of the creation of artificial organs. The application of a PID-controller is considered, which allows precise and adaptive control of processes within the model, such as the supply of nutrients and the removal of toxins. The research methodology covers the creation of a mathematical model, its computer modeling and analysis of the data obtained. The experimental part of the work is to identify the optimal parameters of the PID-controller for various operating conditions of the bio-artificial liver. The results of this study can contribute to improving the effectiveness of bio-artificial systems for supporting liver functions and offer new approaches to the implementation of artificial organs, which has significant potential for the field of transplantation and treatment of liver diseases.

About the authors

Alexey S. Ganshin

RUDN University

Email: 1042210064@pfur.ru
ORCID iD: 0000-0003-3582-4889

Postgraduate student of the Department of Mechanics and Control Processes, Academy of Engineering

Moscow, Russia

Denis A. Andrikov

RUDN University

Author for correspondence.
Email: andrikovdenis@mail.ru
ORCID iD: 0000-0003-0359-0897
SPIN-code: 8247-7310

Candidate of Technical Sciences, Associate Professor of the Department of Mechanics and Control Processes, Academy of Engineering

Moscow, Russia

References

  1. Pereira DS, Pinto JOP. Genetic algorithm based system identification and PID tuning for optimum adaptive control. Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2005;801-806. https://doi.org/10.1109/AIM.2005.1511081
  2. Kato M, Yamamoto T, Fujisawa S. A skill based PID controller using artificial neural networks. International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), Vienna, Austria, 2005. P. 702-707. https://doi.org/10.1109/CIMCA.2005.1631346
  3. Balis UJ, Yarmush ML, Toner M. Bioartificial Liver Process Monitoring and Control Systems with Integrated Systems Capability. Tissue Engineering. 2002;8(3):483-98. https://doi.org/10.1089/1076327027601847
  4. Wu C, Li K, Zhang C, Zhang G, Huo X. Implementation of Signal Detection and Control of Bioartificial Liver Support System. BIBE2021: The Fifth International Conference on Biological Information and Biomedical Engineering. 2021. Article No. 25. https://doi.org/10.1145/3469678.3469703
  5. He Y-T, Qi Y-N, Zhang B-Q, Li J-B, Bao J. Bio-artificial liver support systems for acute liver failure:A systematic review and meta-analysis of the clinical and preclinical literature. World Journal of Gastroenterology. 2019;25(27)3634-3648. https://doi.org/10.3748/wjg.v25.i27.3634
  6. Dolgikh MS. The modern technologies for creation of implanted bioartificial liver. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2010;4(2):150-160. (In Russ.) https://doi.org/10.18097/pbmc20105604425
  7. Pankratov LV. Modeling and optimization of the PID controller. Science and technology of transport. 2017;(2):73-78. (In Russ.) EDN: YSPHYB
  8. Alexandrov AG, Palenov MV. Adaptive PID controllers: state of the art and development prospects. Automation and Remote Control. 2014;75(2):188-199. https://doi.org/10.1134/S0005117914020027 (In Russ.)
  9. Detry O, Arkadopoulos N, Ting P, Kahaku E, Wat-anabe FD, Rozga J, Demetriou AA. Clinical use of a bio-artificial liver in the treatment of acetaminophen-induced fulminant hepatic failure. American surgeon. 1999;65(10):934-938. EDN: DEOHDD
  10. Ding YT, Shi XL. Bioartificial liver devices: Perspectives on the state of the art. Frontiers of Medicine. 2011;5:15-19. https://doi.org/10.1007/s11684-010-0110-x
  11. Park JK, Lee DH. Bioartificial Liver Systems: Current Status and Future Perspective. Journal of Bioscience and Bioengineering. 2005;99(4):311-319. https://doi.org/10.1263/jbb.99.311
  12. Bañares R, Catalina MV, Vaquero J. Molecular adsorbent recirculating system and bioarti cial devices for liver failure. Clin Liver Dis. 2014;18(4):945-956. https://doi.org/10.1016/j.cld.2014.07.011
  13. Cisneros-Garza LE, del Rosario Muñoz-Ramírez M, Muñoz-Espinoza LE. The molecular adsorbent recirculat-ing system as a liver support system: summary of Mexican experience. Ann Hepatol. 2014;13(2):240-247. https://pubmed.ncbi.nlm.nih.gov/24552866/
  14. Kanjo A, Ocskay K, Gede N. Ef cacy and safety of liver support devices in acute and hyperacute liver failure: a systematic review and network meta-analysis. Sci Rep. 2021;11(1):1-10. https://doi.org/10.1038/s41598021-83292-z
  15. Hanish SI, Stein DM, Scalea JR. Molecular Adsor-bent Recirculating System Effectively Replaces Hepatic Funct-ion in Severe Acute Liver Failure. Ann Surg. 2017;266(4):677-684. https://doi.org/10.1097/sla.0000000000002361
  16. Salman GA, Jafar AS, Ismael AI. Application of artificial intelligence techniques for LFC and AVR systems using PID controller. International Journal of Power Electronics and Drive Systems. 2019;10(3):1694. http://dx.doi.org/10.11591/ijpeds.v10.i3.pp1694-1704
  17. Kouba NY, Menaa M, Hasni M, Boudour M. Optimal Control of Frequency and Voltage Variations Using PID Controller Based on Particle Swarm Optimization. Proceedings of the 4th International Conference on Systems and Control. 2015:424-429. http://dx.doi.org/10.1109/ICoSC.2015.7152777
  18. Tan HK. Molecular adsorbent recirculating system (MARS). Ann Acad Med Singap. 2004;33(3):329-335. https://pubmed.ncbi.nlm.nih.gov/15175774/
  19. Khuroo MS, Khuroo MS, Farahat KLC. Molecular adsorbent recirculating system for acute and acute-on-chronic liver failure: a meta-analysis. Liver Transpl. 2004;10(9):1099-1106. https://doi.org/10.1002/lt.20139
  20. Tandon R, Froghi S. Artificial liver support systems. J Gastroenterol Hepatol. 2021;36(5):1164-1179. https://doi.org/10.1111/jgh.15255

Copyright (c) 2024 Ganshin A.S., Andrikov D.A.

License URL: https://creativecommons.org/licenses/by-nc/4.0/legalcode

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies