Exact Partial Solution in a Form of Convex Tetragons Interacting According to the Arbitrary Law for Four Bodies
- Authors: Perepelkina Y.V.1
-
Affiliations:
- Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
- Issue: Vol 25, No 3 (2024)
- Pages: 288-295
- Section: Articles
- URL: https://journals.rudn.ru/engineering-researches/article/view/42384
- DOI: https://doi.org/10.22363/2312-8143-2024-25-3-288-295
- EDN: https://elibrary.ru/YNNOZA
Cite item
Full Text
Abstract
We prove the existence of exact partial solutions in the form of convex quadrilaterals in the general problem of four bodies mutually acting according to an arbitrary law ~1/rк , where k ≥ 2. For each fixed k ≥ 2 the distances between the bodies and their corresponding sets of four masses are found, which determine private solutions in the form of square, rhombus, deltoid and trapezoid. On the basis of the methodology of classical works the equations of motion in Raus - Lyapunov variables in the general problem of four bodies interacting according to a completely arbitrary law are derived, as it took place when Laplace proved the existence of exact partial triangular solutions of the general problem of three bodies with arbitrary masses. An explanation of the problem of existence of this type of solutions is given, due, in particular, to the more complicated geometry of quadrangular solutions in comparison with triangular ones, the existence of which is proved in the general three-body problem by the classics of celestial mechanics. It is suggested that if the arbitrariness of the interaction law is somewhat restricted, it is possible to prove by numerical methods the existence of exact partial solutions at different fixed values k ≥ 2 and unequal values of the masses of the four bodies.
About the authors
Yulianna V. Perepelkina
Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
Author for correspondence.
Email: amadeycity@yandex.com
ORCID iD: 0000-0001-8115-8253
SPIN-code: 5157-4093
Candidate of Physical and Mathematical Sciences, Head of Scientific Information Department of Mechanics
Moscow, RussiaReferences
- Liouville J. Sur un cas particulier du problème de trois corps (Extrait). Comptes Rendus Acad. Sci. 1842; 14(14):503-506. Available from: http://www.numdam.org/item/JMPA_1842_1_7__110_0/ (accessed: 18.01.2024).
- Routh EJ. On Laplace’s three particles, with a supplement on the stability of steady motion. Proc. Lond. Math. Soc. 1875;6:86-97. Available from: https://archive.org/details/stabilityofmotio0000rout (accessed: 18.01.2024).
- Lyapunov AM. The general problem of the stability of motion, translated by A.T. Fuller. London: Taylor & Francis Publ.; 1992. Available from: https://archive.org/details/stabilityofmotio0030amli/page/n7/mode/2up (accessed: 18.01.2024).
- Doubochine GN. Sur les solutions Lagrangiennes et Euleriennes du problème généralisé de trois corps en axes absolus. Celestial Mechanics. 1979;19:243-262. https://doi.org/10.1007/BF01230217
- Butikov E. Motions of Celestial Bodies: Computer simulations. Bristol, UK, IOP Publ.; 2014.
- Llibre J, Moeckel R, Sim C. Central Configurations, Periodic Orbits, and Hamiltonian Systems. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser, Basel; 2015. p. 105-167. https://doi.org/10.1007/978-30348-0933-7_2
- Moeckel R. Central configurations. Scholarpedia. 2014;9(4):10667. https://doi.org/10.4249/scholarpedia. 10667
- Shoaib M, Kashif AR, Szücs-Csillik I. On the planar central configurations of rhomboidal and triangular fourand five-body problems. Astrophysics and Space Science. 2017;362:182. https://doi.org/10.1007/s10509-017-3161-5
- Marchesin M, Vidal C. Spatial restricted rhomboidal five-body problem and horizontal stability of its periodic solutions. Celestial Mechanics and Dynamical Astronomy. 2013;115(3):261-279. https://doi.org/10.1007/s10569-012-9462-7
- Kashif A, Shoaib M, Sivasankaran A. Central configurations of an isosceles trapezoidal five-body problem. In: Corbera M., Cors J., Llibre J., Korobeinikov A. (eds.). Extended Abstracts Spring 2014. Trends in Mathematics, Birkhäuser, Cham. 2015;4:71-76. https://doi.org/10.1007/978-3-319-22129-8_13
- Fernandes AC, Mello LF. On Stacked Planar Central Configurations with Five Bodies when One Body is Removed. Qualitative Theory of Dynamical Systems. 2013;12:293-303. https://doi.org/10.1007/s12346-0120084-y
- Beltritti G, Mazzone F. Oviedo M. The Sitnikov problem for several primary bodies configurations. Celestial Mechanics and Dynamical Astronomy. 2018; 30:45. https://doi.org/10.1007/s10569-018-9838-4
- Hampton M. Planar N-body central configurations with a homogeneous potential. Celestial Mechanics and Dynamical Astronomy. 2019;131:20. https://doi.org/10.1007/s10569-019-9898-0
- Moczurad M, Zgliczyński P. Central configurations in planar n-body problem with equal masses for n = 5, 6, 7. Celestial Mechanics and Dynamical Astronomy. 2019;131:46. https://doi.org/10.1007/s10569-019-9920-6
- Montaldi J. Existence of symmetric central configurations. Celestial Mechanics and Dynamical Astronomy. 2015;122:405-418. https://doi.org/10.1007/s10569-015-9625-4
- Doicu A, Zhao L, Doicu A. A stochastic optimization algorithm for analyzing planar central and balanced configurations in the n-body problem. Celestial Mechanics and Dynamical Astronomy. 2022;134:29. https://doi.org/10.1007/s10569-022-10075-7
- Marchesin M. A family of three nested regular polygon central configurations. Astrophysics and Space Science. 2019;364:160. https://doi.org/10.1007/s10509019-3648-3
- Perepelkina YuV. An unified approach to the linear stability investigation of some classic and generalized planar central configurations of celestial mechanics. Part 2: Numeric investigations. International Journal on Pure and Applied Mathematics, Classical and Celestial Mechanics, Cosmodynamics. 2013;2(3):5-34. (In Russ.) EDN: WJGIQD
- Perepelkina YV, Zadiranov AN. The hierarchical approach to proving the existence of generalized planar nested central configurations on some versions of the general (pn+1)-body problem. RUDN Journal of Engineering Research. 2023;24(1):40-49. (In Russ.) http://doi.org/10.22363/2312-8143-2023-24-1-40-49