μ Robust Stable Extrapolation of a Stationary Random Process with Interval Limited Variance

Cover Page

Cite item

Abstract

A method for synthesizing μ robust stable linear minimax extrapolator of a stationary random process under conditions of interval uncertainty of the parameters of the measured signal is presented. A robust and stable minimax extrapolation is shown in a constructive form of μ, both in terms of the result and the solution. The theorems of determinization and reduction on the existence and uniqueness of a consistent interval saddle point in the problem of extrapolation with small indistinct interval deviations in the right parts of the restrictions on the spectral power density of the perturbation of the measured signal in the form of a consistent interval Lagrange function are formulated and proved. In a constructive form, a 4-step algorithm is proposed for determinizing the search for the optimum of an imperfectly defined functional of the variance of the estimation error to find the optimum of the same name for two fully defined (deterministic) functionals. This approach, unlike others (for example, probabilistic), always ensures the existence of a stable result and solution of a single optimum in the problem of interval minimax extrapolation due to regularization by a small parameter with a derivative of the eigenfunction of a singularly perturbed integro-differential equation of the first order with an integral operator of the Voltaire type of the second kind, defined by a symmetric, closed real the core. Unlike classical forecasting and estimation methods, the proposed method allows us to obtain guaranteed interval-stable robust estimates of the state with some deviations of the actual probabilistic characteristics of the initial data from the hypothetical ones.

About the authors

Igor G. Sidorov

Moscow Polytechnic University

Author for correspondence.
Email: igor8i2016@ya.ru
ORCID iD: 0000-0003-4691-4855
SPIN-code: 1676-7269

Candidate of Technical Sciences, Associate Professor of the Department of Automation and Control Processes

Moscow, Russia

References

  1. Kurkin OM, Korobochkin JuB, Shatalov SA. Minimax information processing. Moscow: Energoatomizdat Publ.; 1990. (In Russ.)
  2. Golubev GK, Pinsker MC. Minimax extrapolation of sequences. Problems Inform. Transmission. 1983;19(4): 275–283. Available from: https://www.mathnet.ru/rus/ppi 1200 (accessed: 22.03.2024).
  3. Sidorov IG, Levin VI. Linear Minimax Interpolation of a Stationary Random Process with Interval Parameters. Systems of Control, Communication and Security. 2021;(1):215–241. (In Russ.) https://doi.org/10. 24411/2410-9916-2021-10109
  4. Kurkin OM. Guaranteed Estimation Algorithms for Prediction and Interpolation of Random Processes. Automation and Remote Control. 2001;62:568–579. https://doi.org/10.1023/A:10102294113516
  5. Sidorov IG. Linear minimax filtering of a stationary random process under the condition of the interval fuzziness in the state matrix of the system with a restricted variance. Journal of Communications Technology and Electronics. 2018;63(8):902–907. https://doi.org/10.1134/ S106422691807015X7.
  6. Karlin S. Mathematical methods and theory in games, programming, and econohic. Moscow: Mir Publ; 1954. (In Russ.)
  7. Аbramov OV, Rozenbaum AN. Forecasting the state of technical systems. Moscow: Nauka Publ.; 1990. (In Russ.) ISBN 5-02-006720-2
  8. Krejn MG, Nudel’man AA. The problem of Markov moments and extreme problems. Moscow: Nauka Publ.; 1968. (In Russ.)
  9. Grenander U. A prediction problem in game theory. Endless antagonistic games. Moscow: Fizmatgiz Publ.; 1963. p. 403–413. (In Russ.)
  10. Levin VI. Interval mathematics and the study of indefinite systems. Information technologies. 1998;(6): 27–33. (In Russ.)
  11. Vasil’eva AB, Butuzov VF. Asymptotic expansions of solutions of singularly perturbed equations. Moscow: Nauka Publ.; 1973. (In Russ.)
  12. Kolmogorov AN, Fomin SV. Elements of the theory of functions and functional analysis. Moscow: Nauka Publ.; 1968. (In Russ.)
  13. Vasil’ev AB, Tihonov NA. Integral equations. Saint Petersburg: Lan Publ.; 2009. (In Russ.) ISBN 9785-8114-0911-2
  14. Stratonovich RL. Theory of information interpolation. Moscow: Sovetskoe radio Publ.; 1975. (In Russ.)
  15. Levin VI. The interval model for the general problem of linear programming: a uniform case. Tambov University Reports. Series Natural and Technical Sciences. 1998;3(4):401–407. EDN: NUWAVD
  16. Levin VI. Interval approach to optimization in conditions of uncertainty. Information technologies. 1999; (1):7–12. (In Russ.)
  17. Levin VI. Interval methods of optimization of systems in conditions of uncertainty. Penza; 1999. (In Russ.)
  18. Levin VI. Comparison of interval values and optimization of uncertain systems. Information technologies. 1998;(7):22–32. (In Russ.)
  19. Levin VI. Antagonistic games with interval parameters. Cybernetics and Systems Analysis. 1999;35(3): 149–160. (In Russ.) EDN: VUFLJN
  20. Levin VI. Interval approach to optimization with uncertainty. Systems of control, communication and security. 2015;(4):123–141. (In Russ.) EDN: VBLVEL
  21. Levin VI. Discrete optimization under conditions of interval uncertainty. Automation and telemechanics. 1992;(7):97–106. (In Russ.) EDN: VUFLOD
  22. Levin VI. Nonlinear optimization under conditions of interval uncertainty. Cybernetics and system analysis. 1999;35(2):138–147. (In Russ.)
  23. Neiman D, Morgenstern O. Game theory and economic behavior. Moscow: Nauka Publ.; 1970. (In Russ.)
  24. Moklyachuk MP, Masyutka AYu. Minimax-robust estimation technique: For stationary stochastic processes. Saarbrucken: LAP LAMBERT Academic Publ.; 2012.
  25. Moklyachuk MP, Sidei MI. Extrapolation Problem for Stationary Sequences with missing Observations. Statistics, optimization and information computing. 2017; 5(3):212–233. https://doi.org/10.19139/soic.v5i3.284
  26. Taniguchi M. Robust regression and interpolation for time series. Journal of Time Series Analysis. 1981; 2(1):53–62. https://doi.org/10.1111/J.1467-9892.1981.TB 00311.X
  27. Kazakos D, Makki KS. Robust Time Series Estimation. Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering. Tenerife, Canary Islands, Spain, December 16–18. 2006. p. 284–287. Available from: http://wseas.us/e-library/conferences/ 2006tenerife/papers/541-366.pdf (accessed: 21. 03.2024).
  28. Kassam SA, Poor HV. Robust Techniques for Signal Processing: A survey. Proceedings of the IEEE. 1985;73(3):433–481. https://doi.org/10.1109/PROC.1985. 13167
  29. Franke J. On the robust prediction and interpolation of time series in the presence of correlated noise. Journal of Time Series Analysis. 1984;5(4):227–244. https://doi.org/10.1111/j.1467-9892.1984.tb00389.x
  30. Ohrn K, Ahlen A, Sternad M. A probabilistic approach to multivariable robust filtering аnd open-loop control. IEEE Transactions on Automatic Control. 1995; 40(3):405–418. https://doi.org/10.1109/9.376052
  31. Mangoubi R. Robust Estimation and Failure Detection, A Concise Treatment. Springer — Verlag, Berlin, Germany; 1998. https://doi.org/10.1007/978-1-4471- 1586-1
  32. Xie L, Soh YC. Robust Kalman filtering for uncertain systems. Systems and Control Letters. 1994;22(2): 123–129. https://doi.org/10.1016/0167-6911(94)90106-6
  33. Kaucher E. Interval analysis in the extended interval space IR. Computing Supplement. 1980;2:33–49. https://doi.org/10.1007/978-3-7091-8577-3_3
  34. Pek Dzh EL, Dalmidzh AL. Games on compact sets. Infinite antagonistic games. Moscow: Fizmatgiz Publ.; 1963. p. 85–97. (In Russ.)
  35. Voshchinin AP, Sotirov GR. Optimization under uncertainty. Moscow: MEI Publ.; 1989. (In Russ.)
  36. Ashchepkov LT, Davydov DV. Universal solutions to interval optimization and management problems. Moscow: Nauka Publ.; 2006. (In Russ.)

Copyright (c) 2024 Sidorov I.G.

License URL: https://creativecommons.org/licenses/by-nc/4.0/legalcode

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies