Load Distribution Between Rolling Elements of Roller Bearings

Cover Page

Cite item

Abstract

A method for determining the degree of loading of rolling elements in the working area of roller radial single-row bearings has been developed, according to this method the load distribution between rolling elements in the working area of these bearings depends on their location in this zone and the size of the contact pad between the maximally loaded rolling element and the outer ring of the bearing. Using the developed methodology, the radial force acting on the bearing is calculated for specific examples. As a result, the ratio between the radial force of the bearing and the force acting on the most loaded rolling body is obtained, which differs from the calculation of these bearings accepted in modern practice. It is also shown that this ratio is not constant, but depends on the magnitude of the force acting on the most loaded rolling body and the size of the rings and rolling bodies of the bearing. In this regard the following is proposed, in order to determine the maximum load on the rolling bodies-rollers in the working area of the bearing using the developed methodology, the method of iterations or successive approximations is suggested to be used, the essence of which consists in the initial approximate determination of the force acting on the most loaded rolling body, subsequent determination of the load on the bearing and comparing it with the actual force. By repeating this process many times, it is possible to obtain the maximum force acting on the rolling elements in the working area of the bearing with any degree of accuracy.

About the authors

Yuriy V. Belousov

Bauman Moscow State Technical University (National Research University); RUDN University

Author for correspondence.
Email: juvbelousov@bmstu.ru
ORCID iD: 0000-0002-7591-8313
SPIN-code: 7102-6966

PhD (Technical Sciences), Associate Professor of the Department of Basic of Machine Designing, Bauman Moscow State Technical University; Associate Professor of the Department of Civil Engineering, Academy of Engineering, RUDN University

Moscow, Russia

References

  1. Kirilovskiy VV, Belousov YuV. Theoretical substantiation of new features of rolling bearings operation under combined loading conditions. RUDN Journal of Engineering Research. 2021;22(2):184–195. (In Russ.) https://doi.org/10.22363/2312-8143-2021-22-2-184-195
  2. Kirilovskiy VV, Belousov YuV. Experimental verification of new features of bearing operation under combined loading conditions. Construction Mechanics of Engineering Structures and Structures. 2021;17(3):278–287. (In Russ.) https://doi.org/10.22363/1815-5235-2021-2021-17-3-278-287
  3. Belousov YuV, Kirilovskiy VV. Investigation of the influence of the degree of contact of rolling surfases on contact stresses in ball radial bearing. RUDN Journal of Engineering Research.2022;23(3):213–223. (In Russ.) http://doi.org/10.22363/2312-8143-2022-23-3-213-223.
  4. Orlov AV. Increasing the static load capacity of ball bearing. Problems of mechanical engineering and machine reliability. 2009;(5):67–70. (In Russ.) EDN: KUIAEH
  5. Polubaryev IN, Dvoryaninov IN, Saliev ER. Experimental verification of a new approach to the determination of the loads acting on the single-row radial ball bearings. Forum Molodyh Uchenyh. 2017;9(13):591–600. (In Russ.) EDN: ZSJYWB
  6. Bogdański S, Trajer MA. Dimensionless multisize finite element model of a rolling contact fatigue crack. Wear. 2005;258(7–8):1265–1272. https://doi.org/10.1016/j.wear.2004.03.036
  7. Golmohammadi Z, Sadeghi FA. 3D finite element model for investigating effects of refurbishing on rolling contact fatigue. Tribology Transactions. 2020;63(2):251–264. https://doi.org/10.1080/10402004.2019.1684606
  8. Paulson NR, Evans NE, Bomidi JAR, Sadeghi F, Evans RD, Mistry KK. A finite element model for rolling contact fatigue of refurbished bearings. Tribology International. 2015;85:1–9. https://doi.org/10.1016/j.triboint.2014.12.006
  9. Weinzapfel N, Sadeghi F, Bakolas V. A 3D finite element model for investigating effects of material microstructure on rolling contact fatigue. Tribology and Lubrication Technology. 2011;67(1):17–19.
  10. Abdullah MU, Khan ZA, Kruhoeffer W, Blass T. A 3D finite element model of rolling contact fatigue for evolved material response and residual stress estimation. Tribology Letters. 2020;68:122. https://doi.org/10.1007/s11249-020-01359-w
  11. Lin H, Wu F, He G. Rolling bearing fault diagnosis using impulse feature enhancement and nonconvex regularization. Mechanical Systems and Signal Processing. 2020;142:106790. https://doi.org/10.1016/j.ymssp.2020.106790
  12. Wang H, Du W. A new K-means singular value decomposition method based on self-adaptive matching pursuit and its application in fault diagnosis of rolling bearing weak fault. International Journal of Distributed Sensor Networks. 2020;16(5). https://doi.org/10.1177/1550147720920781
  13. Nosov VB. Bearing units of modern machines and devices: Encyclopedic reference book. Moscow: Machinostroenie Publ.; 1997. (In Russ.)
  14. Timoshenko SP, Goodyear J. Theory of elasticity. Moscow: Nauka Publ. (In Russ.)
  15. Gaikwad JA, Gholap YB, Kulkarni JV. Bearing fault detection using Thomson’s multitaper periodogram. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) Madurai; 2018. p. 1135–1139. https://doi.org/10.1109/ICCONS.2018.8663183
  16. Bronstein IN, Semendyaev KA. Handbook of mathematics for engineers and students of higher education institutions. Tenth edition, stereotypical. Moscow: Nauka Publ.; 1964.
  17. Perel LYa, Filatov AA. Rolling bearings: Cal- culation, design and maintenance of supports: Handbook. Moscow: Machinostroenie Publ.; 1992. (In Russ.)
  18. Smith WA, Randall RB. Diagnostics using the case western reserve university data: a benchmark study. Mechanical Systems and Signal Processing. 2015;64– 65:100–131. https://doi.org/10.1016/j.ymssp.2015.04.021
  19. Gao Z, Lin J, Wang X, Xu X. Bearing fault detection based on empirical wavelet transform and correlated kurtosis by acoustic emission. Materials. 2017;10(6):571. https://doi.org/10.3390/ma10060571

Copyright (c) 2024 Belousov Y.V.

License URL: https://creativecommons.org/licenses/by-nc/4.0/legalcode

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies