Highly Efficient Photovoltaic Laser Power Converters

Abstract

Photovoltaic conversion of laser radiation has found wide application in fiberoptic communication lines. Energy transfer via a laser beam is also relevant for remote power supply systems on Earth and in space. These systems can be used to power unmanned aerial vehicles, to transfer laser energy between spacecraft and from space solar panels to Earth. One of the main tasks in creating such systems is to ensure high efficiency of photovoltaic converters at high power (more than 100 W/cm2) of laser radiation. The article presents the results of research and development of photovoltaic converters of highpower laser radiation based on nanoheterostructures obtained by MOCVD epitaxy. The reduction of losses was achieved by embedding the “dielectric-silver” rear combined reflector into the structure. An increase in the generated voltage was achieved by shifting the volume charge region into the wide-gap layer of the p-GaAs-n-AlxGa1-xAs heterojunction. Thanks to an additional reduction in ohmic losses, efficiency values of > 60 % have been achieved at laser radiation (λ = 860 nm) powers in the range of 50-400 W/cm2.

About the authors

Viacheslav M. Andreev

Ioffe Institute

Author for correspondence.
Email: vmandreev@mail.ioffe.ru
ORCID iD: 0000-0001-9927-3719
SPIN-code: 8199-5248

Doctor of Technical Sciences, Corresponding Member of the Russian Academy of Sciences, Chief Researcher of Photovoltaics Laboratory

St.Petersburg, Russia

Nikolay A. Kalyuzhnyy

Ioffe Institute

Email: Nickk@mail.ioffe.ru
ORCID iD: 0000-0001-8443-4663
SPIN-code: 2106-9180

Candidate of Physical and Mathematical Sciences, Head of Nanoheterostructural Emitters and photodetectors Laboratory

St.Petersburg, Russia

Aleksandra V. Malevskaya

Ioffe Institute

Email: amalevskaya@mail.ioffe.ru
ORCID iD: 0000-0003-4018-6631

researcher of Nanoheterostructural emitters and photodetectors laboratory

St.Petersburg, Russia

Mariia V. Nakhimovitch

Ioffe Institute

Email: NMar@mail.ioffe.ru
ORCID iD: 0009-0005-4371-1077

Researcher of Photovoltaics Laboratory

St.Petersburg, Russia

Maxim Z. Shvarts

Ioffe Institute

Email: shvarts@scell.ioffe.ru
ORCID iD: 0000-0002-2230-7770
SPIN-code: 6900-3137

Candidate of Physical and Mathematical Sciences, Head of Photovoltaics Laboratory

St.Petersburg, Russia

References

  1. Andreev VM, Grilikhes VA, Rumyantsev VD.Photovoltaic Conversion of Concentrated Sunlight (monograph). John Wiley Publ.; 1997.
  2. Alferov ZhI, Andreev VM, Rumyantsev VD. III-V heterostructures in photovoltaics. Concentrator Photovoltaics. Springer Series in Optical Sciences. 2007; 130:25-50. https://doi.org/10.1007/978-3-540-68798-6_2
  3. Alferov ZhI, Andreev VM, Rumyantsev VD. III- V solar cells and concentrator arrays. High-Efficient Low-Cost Photovoltaics, Springer Series in Optical Sciences. 2008;140:101-141. https://doi.org/10.1007/978-3-540-79359-5_8
  4. Alferov ZhI, Andreev VM, Shvarts MZ. III-V Solar Cells and Concentrator Arrays. High-Efficient Low-Cost Photovoltaics. Recent Developments. Springer Series in Optical Sciences. 2020;140:133-174. https://doi.org/10.1007/978-3-030-22864-4_8
  5. Iles PA. Non-solar photovoltaic cells. IEEE Conference on Photovoltaic Specialists, Kissimmee, FL, USA, 1990;(1):420-425. https://doi.org/10.1109/PVSC.1990.111659
  6. Olsen LC, Huber DA, Dunham G, Addis FW,Anheier N. High efficiency monochromatic GaAs solar cells. Proceedings of 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA. 1991;(1):419-424. https://doi.org/10.1109/PVSC.1991.169250
  7. Howell JT, O’Neill MJ, Fork RL. Advanced receiver/converter experiments for laser wireless power transmission. In: Proc. 5th Wireless Power Transmission Conf. together with 4th Intern. Conf. on Solar Power from Space. Granada, Spain, 2004. p. 187-194.
  8. Schubert J, Oliva E, Dimroth F, Guter W, Loeckenhoff R, Bett AW. High-voltage GaAs photovoltaic laser power converters. IEEE Transactions of electron devices. 2009;56(2):170-175.
  9. Helmers H, Bett AW. Photovoltaic laser power converters for wireless optical power supply of sensor systems. IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). 2016. https://doi.org/10.1109/WiSEE.2016.7877321
  10. Jarvis S.D., Mukherjee J., Perren M., Sweeney S.J. Development and characterisation of laser power converters for optical power transfer applications. IET Optoelectron. 2014;8(2):64. https://doi.org/10.1049/iet-opt.2013.0066
  11. Kimovec R, Helmers H, Bett AW, Topic M. Comprehensive electrical loss analysis of monolithic interconnected multi-segment laser power converters. Progress in Photovoltaics Research and Application. 2019;27(3):199-209. https://doi.org/10.1002/pip.3075
  12. Mukherjee J, Jarvis S, Perren M, Sweeney SJ. Efficiency limits of laser power converters for optical power transfer applications. Journal of Physics D: Applied Physics. 2013;46(26):264006. https://doi.org/10.1088/0022-3727/46/26/264006
  13. Andreev V, Khvostikov V, Kalinovsky V, Lantratov V, Grilikhes V, Rumyantsev V, Shvarts M, Fokanov V, Pavlov A. High current density GaAs and GaSb photovoltaic cells for laser power beaming. Proc. 3rd World Conf. on Photovoltaic Energy Conversion (Osaka). 2003:3P-B5-33.
  14. Klinger S, Vogel W, Berroth M, Kaschel M. Ge on Si p-i-n photodetectors with 40 GHz bandwidth. 5th IEEE International Conference on Group IV Photonics, Sorrento, Italy. 2008:188-190. https://doi.org/10.1109/GROUP4.2008.4638140
  15. Piels M, Bowers JE. 40 GHz Si/Ge uni-traveling carrier waveguide photodiode. Lightwave Technology. 2014;32(20):3502-3508. https://doi.org/10.1109/JLT.2014.2310780
  16. Kalyuzhnyy NA, Emelyanov VM, Evstropov VV, Mintairov SA, Mintairov MA, Nahimovich MV, Salii RA, Shvarts MZ. Optimization of photoelectric parameters of InGaAs metamorphic laser (λ = 1064 nm) power converters with over 50 % efficiency. Solar Energy Materials and Solar Cells. 2020;217:110710. https://doi.org/10.1016/j.solmat.2020.110710
  17. Kalyuzhnyy NA, Emelyanov VM, Mintairov SA, Nahimovich MV, Salii RA, Shvarts MZ. InGaAs metamorphic laser power converters with distributed Bragg reflector for wavelength range lambda=1-1.1 mum. AIP Conference Proceedings. 2020;2298(1):030001. https://doi.org/10.1063/5.0032903
  18. Kim Y, Shin H-B, Lee W-H, Jung SH, Kim CZ, Kim H, Lee YT, Kang HK. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Solar Energy Materials and Solar Cells. 2019;200:109984. https://doi.org/10.1016/j.solmat. 2019.109984
  19. Oliva E, Dimroth E, Bett AW. GaAs converters for high power densities of laser illumination. Progress in Photovoltaics. Research and Applications. 2008; 16:289-295. https://doi.org/10.1002/pip.811
  20. Panchak AN, Pokrovskiy PV, Malevskiy DA, Larionov VR, Shvarts MZ. High-Efficiency Conversion of High-Power-Density Laser Radiation. Technical Physics Letters. 2019;45(1):24-26. https://doi.org/10.1134/S1063785019010310
  21. Khvostikov VP, Kalyuzhnyy NA, Mintairov SA, Sorokina SV, Potapovich NS, Emelyanov VM, Timoshina NKh, Andreev VM. Photovoltaic Laser-Power Converter Based on AlGaAs/GaAs Heterostructures. Semiconductors. 2016;50(9):1220-1224. https://doi.org/10.1134/S1063782616090128
  22. Helmers H, Lopez E, Höhn O, Lackner D, Schön J, Schauerte M, Schachtner M, Dimroth F, Bett AW. 68.9 % Efficient GaAs-Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance. Phys. Status Solidi RRL. 2021;2100113. https://doi.org/10.1002/pssr.202100113
  23. Beattie MN, Helmers H, Forcade GP, Valdivia CE, Höhn O, Hinzer K. InP- and GaAs-Based Photonic Power Converters Under O-Band Laser Illumination: Performance Analysis and Comparison. IEEE Journal of Photovoltaics. 2023;13(1):113-121.

Copyright (c) 2024 Andreev V.M., Kalyuzhnyy N.A., Malevskaya A.V., Nakhimovitch M.V., Shvarts M.Z.

License URL: https://creativecommons.org/licenses/by-nc/4.0/legalcode

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies