Submarine pipeline stability under currents and waves action

Cover Page

Cite item

Abstract

Pipelines are widely used in recent decades because their eco-friendliness, safety and profitability of transportation. Their length can be more than hundreds and thousands of kilometers. Submarine pipelines got wide distribution. Their constructing must comply with regulatory documents. But even it can’t guarantee no problems during operation. This study contains review of the different research, connected with floating of a submarine pipeline problem. Information about conducted research and their conclusions is summarized in this paper. Direction for the future investigations is shown. Submarine pipelines are subjected to vertical movement (floating). Pipeline ballasting method is used to avoid this situation. Ballasting by loading bags is considered in this article. This study contains review of the different research, connected with floating of a submarine pipeline problem. Calculations required for the correct selection of the loading bags weight are performed, possible reasons for floating are described. This article will be useful for submarine pipeline designers.

About the authors

Konstantine P. Mordvintsev

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: mkp58@yandex.ru

Associate Professor of the Construction Department, Academy of Engineering, RUDN University, PhD in Engineering sciences

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Alexander G. Gogin

Peoples’ Friendship University of Russia (RUDN University)

Email: alex.gogin@bk.ru

Assistant of the Construction Department, Academy of Engineering, RUDN University

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Ekaterina M. Korneeva

Peoples’ Friendship University of Russia (RUDN University)

Email: korneeva.e.m@yandex.ru

Master Degree Student of the Construction Department, Academy of Engineering, RUDN University

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

References

  1. Zhao E, Qu K, Mu L, Kraatz S, Shi B. Numerical Study on the Hydrodynamic Characteristics of Submarine Pipelines under the Impact of Real-World Tsunami-Like Waves. Water. 2019;11(2):221. https://doi.org/10.3390/w11020221
  2. Huang B, Liu J, Lin P, Ling D. Uplifting Behavior of Shallow Buried Pipe in Liquefiable Soil by Dynamic Centrifuge Test. Hindawi Publishing Corporation Scientific World Journal. 2014: Article ID 838546. https://doi.org/10.1155/2014/838546
  3. Magda W, Maeno S, Nago H. Floatation of buried submarine pipeline under cyclic loading of water pressure – Numerical and experimental studies. Journal of the Faculty of Environmental Science and Technology. 2001;(691):105-120. https://doi.org/10.2208/jscej.2001.691_105
  4. Sarychev IL, Kuz’bozhev AS, Birillo IN, Mayanc YuA, Elfimov AV. Issledovanie prichin izmeneniya nachal’nogo polozheniya podvodnogo perekhoda gazoprovod [Investigation of the reasons for changing the initial position of the gas pipeline underwater crossing]. Nauchno-tekhnicheskij sbornik Vesti gazovoj nauki [Scientific and technical collection of Gas science News]. 2020;S1(43):78—86. (In Russ.)
  5. RAO «GAZPROM» SP 107-34-96 Ballastirovka, obespechenie ustojchivosti polozheniya gazoprovodov na proektnyh otmetkah [Ballasting, ensuring the stability of the position of gas pipelines at the design marks]. Moscow; 1996. (In Russ.)
  6. Mansurov MN, Lapteva TI, Kopaeva LA. Vliyanie donnyh nanosov i dampinga grunta na ustojchivost’ morskih podvodnyh truboprovodov [Influence of bottom sediment and soil dumping on the stability of offshore subsea pipelines]. Nauchno-tekhnicheskij sbornik Vesti gazovoj nauki [Scientific and technical collection of Gas science News]. 2013;3(14):119—124. (In Russ.)
  7. Naumova GA. Raschet truboprovodnyh konstrukcij s ekspluatacionnymi povrezhdeniyami [Calculation of pipeline structures with operational damage]. Volgograd: Volg GASU Publ.; 2009. (In Russ.)
  8. Yasin EM, Chernikin VI. Ustojchivost’ podzemnyh truboprovodov [Stability of underground pipelines]. Moscow: Nedra Publ.; 1967. (In Russ.)
  9. Yasin EM, Berezin VL, Rashchepkin KE. Nadezhnost’ magistral’nyh truboprovodov [Reliability of main pipelines]. Moscow: Nedra Publ.; 1972. (In Russ.)
  10. Borodavkin PP. Mekhanika gruntov [Soil mechanics]. Moscow: Nedra Publ.; 2003. (In Russ.)
  11. Ajnbinder AB. Raschet magistral’nyh i promyslovyh truboprovodov na prochnost’ i ustojchivost’: Spravochnoe posobie [Calculation of main and field pipelines for strength and stability: Reference manual]. Moscow: Nedra Publ.; 1991. (In Russ.)
  12. Idrisova YaR. Choice of model of the pipeline interaction with soil in assessing its stressed-strained state. Problemy sbora, podgotovki i transporta nefti i nefteproduktov [Problems of collecting, preparing and transporting oil and petroleum products]. 2014;2(96):126—133. (In Russ.)
  13. Idrisova YaR. Obespechenie bezopasnoj ekspluatacii magistral’nyh nefte- i nefteproduktoprovodov na uchastkah mnogoletnemerzlyh gruntov [Ensuring the safe operation of main oil and oil product pipelines in permafrost areas]. (Thesis of Candidate of Technical Sciences). Ufa; 2015. (In Russ.)
  14. Babin LA, Bykov LI, Volohov VYa. Tipovye raschety po sooruzheniyu truboprovodov [Typical calculations for the construction of pipelines]. Moscow: Nedra Publ.; 1979. (In Russ.)
  15. Taran VD. Sooruzhenie magistral’nyh truboprovodov [Construction of the main pipelines]. Moscow: Nedra Publ.; 1964. (In Russ.)
  16. Voznesenskij EA. Zemletryaseniya i dinamika gruntov [Earthquakes and soil dynamics]. Sorosovskij obrazovatel’nyj zhurnal. 1998;2:101—108. (In Russ.)
  17. Gilyov EE, Shubin SN, Borovkov AI, Abramyan AK. Modeling of hydrodynamic impact on underwater gas pipeline in a trench with liquefied soil. Computational continuum mechanics. 2011;4(3):41—47. (In Russ.)
  18. Sumer B M, Truelsen C, Fredsøe J. Liquefaction around pipelines under waves. J. Waterw. port, coastal, Ocean Eng. American Society of Civil Engineers, 2006;132(4):266—275. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:4(266)
  19. Sumer BM, Hatipoglu F, Fredsøe J, Ottesen Hansen N-E. Critical flotation density of pipelines in soils liquefied by waves and density of liquefied soils. J. Waterw. port, coastal, Ocean Eng. American Society of Civil Engineers. 2006;132(4):252—265. https://doi.org/10.1061/(ASCE)0733- 950X(2006)132:4(252)
  20. Prokof’ev AB, Shahmatov EV, Mironova TB. Mathematical model of pipelines oscillation resulting from pulsing fluid flow. Shipbuilding. 2011;2:39—42. (In Russ.)
  21. Voronin KS. Prognozirovanie razvitiya povrezhdenij na magistral’nyh gazoprovodah pod vozdejstviem dinamicheskoj nagruzki [Predicting the development of damage on main gas pipelines under the influence of dynamic load]. (Thesis of Candidate of Technical Sciences). 2013.

Copyright (c) 2021 Mordvintsev K.P., Gogin A.G., Korneeva E.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies