Model and algorithm for forming the optimum logistic plan of the complex of the related works

Cover Page

Cite item

Abstract

A model and an algorithm for the formation of an optimal logistic plan for the implementation of a complex of related works are proposed. The model is based on the presentation of the optimization procedure in the form of a non-linear problem of discrete programming, consisting in minimizing the execution time of a complex of related works by a limited number of partially interchangeable executors, while limiting the total cost of work.

About the authors

V G Anisimov

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: an-33@yandex.ru

Doctor of Technical Sciences, Professor of the Department of Information Systems in Economics and Management

Polytechnic str., 29, St. Petersburg, Russia, 195251

M R Gapov

Ministry of Economic Development of Karachay-Cherkess Republic

Email: mgapov@gmail.com

Candidate of Economic Sciences, Deputy Minister of Economic Development

Komsomolskaya str., 23, Cherkessk, Russia, 369000

E S Rodionova

Saint-Petersburg named by V.B. Bobkov branch of the Russian Customs Academy

Email: wart1983@mail.ru

Candidate of Economic Sciences, Associate professor of Department

Sofiyskaya str., 52A, St. Petersburg, Russia, 192236

References

  1. Alekseev A.O. (1988) Primenenie tsepei Markova k otsenke vychislitel’noi slozhnosti simpleksnogo metoda / A.O. Alekseev, O.G. Alekseev [i dr.]. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya. № 3. S. 59—63. (In Russ).
  2. Anisimov V.G., Anisimov E.G. (1992) Algoritm vetvei i granits dlya odnogo klassa zadach teorii raspisanii. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. T. 32. № 12. S. 200—205. (In Russ).
  3. Anisimov V.G., Anisimov E.G. (1997) Algoritm optimal’nogo raspredeleniya diskretnykh neodnorodnykh resursov na seti. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. T. 37. № 2. S. 54—60. (In Russ).
  4. Anisimov V.G., Anisimov E.G. (1997) Modifikatsiya metoda resheniya odnogo klassa zadach tselochislennogo programmirovaniya. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. T. 37. № 2. S. 179—183. (In Russ).
  5. Bosov D.B. (2009) Matematicheskie modeli i metody upravleniya innovatsionnymi proektami / D.B. Bosov [i dr.]. Ministerstvo obrazovaniya i nauka RF, Institut sovremennoi ekonomiki. Moskva. 188 s. (In Russ).
  6. Bosov D.B. (2006) Setevye modeli i metody resursno-vremennoi optimizatsii v upravlenii innovatsionnymi proektami / D.B. Bosov [i dr.]. Moskva: Moskovskii gorodskoi pedagogicheskii universitet. 117 s. (In Russ).
  7. Kezhaev V.A. (2004) Metody i modeli optimizatsii v upravlenii razvitiem slozhnykh tekhnicheskikh system / V.A. Kezhaev, A.M. Borisov [i dr.]. Sankt-Peterburg: Izdatel’stvo “Politekhnika”. 279 s. (In Russ).
  8. Novikov V.E. (2016) Modelirovanie optimizatsionnykh zadach podderzhki prinyatiya reshenii v innovatsionnom menedzhmente / V.E. Novikov, V.A. Ostanin [i dr.]. Vestnik Rossiiskoi tamozhennoi akademii. № 1 (34). S. 90—98. (In Russ).
  9. Tebekin A.V. (2017) Strategicheskoe upravlenie innovatsionnoi deyatel’nost’yu: analiz, planirovanie, modelirovanie, prinyatiya reshenii, organizatsiya, otsenka / A.V. Tebekin, T.N. Saurenko [i dr.] / pod red. professora A.V. Tebekina. SPb.: Izdatel’stvo «Strategiya budushchego». 312 s. (In Russ).
  10. Chechevatov A.V. (2006) Optimizatsionnye modeli i metody v upravlenii innovatsionnymi protsessami / A.V. Chechevatov, A.Ya. Chernysh [i dr.]. Moskva: Rossiiskaya tamozhennaya akademiya. 96 s. (In Russ).

Copyright (c) 2018 Anisimov V.G., Gapov M.R., Rodionova E.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies