Model and algorithm for forming the optimum logistic plan of the complex of the related works
- Authors: Anisimov VG1, Gapov MR2, Rodionova ES3
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Ministry of Economic Development of Karachay-Cherkess Republic
- Saint-Petersburg named by V.B. Bobkov branch of the Russian Customs Academy
- Issue: Vol 26, No 1 (2018)
- Pages: 7-18
- Section: MANAGEMENT AND MARKETING ISSUES
- URL: https://journals.rudn.ru/economics/article/view/18506
- DOI: https://doi.org/10.22363/2313-2329-2018-26-1-7-18
Cite item
Full Text
Abstract
A model and an algorithm for the formation of an optimal logistic plan for the implementation of a complex of related works are proposed. The model is based on the presentation of the optimization procedure in the form of a non-linear problem of discrete programming, consisting in minimizing the execution time of a complex of related works by a limited number of partially interchangeable executors, while limiting the total cost of work.
About the authors
V G Anisimov
Peter the Great St. Petersburg Polytechnic University
Author for correspondence.
Email: an-33@yandex.ru
Doctor of Technical Sciences, Professor of the Department of Information Systems in Economics and Management
Polytechnic str., 29, St. Petersburg, Russia, 195251M R Gapov
Ministry of Economic Development of Karachay-Cherkess Republic
Email: mgapov@gmail.com
Candidate of Economic Sciences, Deputy Minister of Economic Development
Komsomolskaya str., 23, Cherkessk, Russia, 369000E S Rodionova
Saint-Petersburg named by V.B. Bobkov branch of the Russian Customs Academy
Email: wart1983@mail.ru
Candidate of Economic Sciences, Associate professor of Department
Sofiyskaya str., 52A, St. Petersburg, Russia, 192236References
- Alekseev A.O. (1988) Primenenie tsepei Markova k otsenke vychislitel’noi slozhnosti simpleksnogo metoda / A.O. Alekseev, O.G. Alekseev [i dr.]. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya. № 3. S. 59—63. (In Russ).
- Anisimov V.G., Anisimov E.G. (1992) Algoritm vetvei i granits dlya odnogo klassa zadach teorii raspisanii. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. T. 32. № 12. S. 200—205. (In Russ).
- Anisimov V.G., Anisimov E.G. (1997) Algoritm optimal’nogo raspredeleniya diskretnykh neodnorodnykh resursov na seti. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. T. 37. № 2. S. 54—60. (In Russ).
- Anisimov V.G., Anisimov E.G. (1997) Modifikatsiya metoda resheniya odnogo klassa zadach tselochislennogo programmirovaniya. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. T. 37. № 2. S. 179—183. (In Russ).
- Bosov D.B. (2009) Matematicheskie modeli i metody upravleniya innovatsionnymi proektami / D.B. Bosov [i dr.]. Ministerstvo obrazovaniya i nauka RF, Institut sovremennoi ekonomiki. Moskva. 188 s. (In Russ).
- Bosov D.B. (2006) Setevye modeli i metody resursno-vremennoi optimizatsii v upravlenii innovatsionnymi proektami / D.B. Bosov [i dr.]. Moskva: Moskovskii gorodskoi pedagogicheskii universitet. 117 s. (In Russ).
- Kezhaev V.A. (2004) Metody i modeli optimizatsii v upravlenii razvitiem slozhnykh tekhnicheskikh system / V.A. Kezhaev, A.M. Borisov [i dr.]. Sankt-Peterburg: Izdatel’stvo “Politekhnika”. 279 s. (In Russ).
- Novikov V.E. (2016) Modelirovanie optimizatsionnykh zadach podderzhki prinyatiya reshenii v innovatsionnom menedzhmente / V.E. Novikov, V.A. Ostanin [i dr.]. Vestnik Rossiiskoi tamozhennoi akademii. № 1 (34). S. 90—98. (In Russ).
- Tebekin A.V. (2017) Strategicheskoe upravlenie innovatsionnoi deyatel’nost’yu: analiz, planirovanie, modelirovanie, prinyatiya reshenii, organizatsiya, otsenka / A.V. Tebekin, T.N. Saurenko [i dr.] / pod red. professora A.V. Tebekina. SPb.: Izdatel’stvo «Strategiya budushchego». 312 s. (In Russ).
- Chechevatov A.V. (2006) Optimizatsionnye modeli i metody v upravlenii innovatsionnymi protsessami / A.V. Chechevatov, A.Ya. Chernysh [i dr.]. Moskva: Rossiiskaya tamozhennaya akademiya. 96 s. (In Russ).