Abstract
В работе развиваются исследования теории антикомпактных множеств (антикомпактов), введенных нами ранее. Описан класс пространств Фреше, в которых существуют антикомпакты - это те и только те пространства, которые имеют счетное тотальное множество линейных непрерывных функционалов. В таких пространствах доказан аналог теоремы Хана-Банаха о продолжении всякого линейного непрерывного функционала, заданного на исходном пространстве, на пространство, порожденное некоторым антикомпактом. Получен аналог теоремы А. А. Ляпунова о выпуклости и компактности образа векторных мер, который утверждает выпуклость и относительную слабую компактность специального типа замыкания образа безатомной векторной меры со значениями в пространстве Фреше, имеющем антикомпакт. С использованием полученного аналога теоремы А. А. Ляпунова доказана разрешимость бесконечномерного аналога задачи о справедливом разделе ресурсов, а также получен аналог теоремы А. А. Ляпунова для неаддитивных аналогов мер - векторных квазимер со значениями во всяком бесконечномерном пространстве Фреше, имеющем антикомпакт. В классе пространств Фреше, имеющих антикомпакт, получены аналоги теоремы Крейна-Мильмана о крайних точках для необязательно компактных выпуклых ограниченных множеств. Особое место занимают аналоги теоремы Крейна-Мильмана в терминах введенных в работе крайних последовательностей (или секвенциальные аналоги теоремы Крейна-Мильмана).