Asymptotic Behavior of Solutions of a Complete Second-Order Integro-Differential Equation
- Authors: Zakora D.A.1
-
Affiliations:
- Vernadsky Crimean Federal University
- Issue: Vol 68, No 3 (2022): Proceedings of the Crimean Autumn Mathematical School-Symposium
- Pages: 451-466
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/31864
- DOI: https://doi.org/10.22363/2413-3639-2022-68-3-451-466
Cite item
Full Text
Abstract
In this paper, we study a complete second-order integro-differential operator equation in a Hilbert space. The difference-type kernel of an integral perturbation is a holomorphic semigroup bordered by unbounded operators. The asymptotic behavior of solutions of this equation is studied. Asymptotic formulas for solutions are proved in the case when the right-hand side is close to an almost periodic function. The obtained formulas are applied to the study of the problem of forced longitudinal vibrations of a viscoelastic rod with Kelvin-Voigt friction.
About the authors
D. A. Zakora
Vernadsky Crimean Federal University
Author for correspondence.
Email: dmitry.zkr@gmail.com
Simferopol’, Russia
References
- Власов В.В., Раутиан Н.А. Спектральный анализ функционально-дифференциальных уравнений.- М.: МАКС Пресс, 2016.
- Власов В.В., Раутиан Н.А. Экспоненциальная устойчивость полугрупп, порождаемых вольтерровыми интегро-дифференциальными уравнениями с сингулярными ядрами// Дифф. уравн.- 2021.- 57, № 10.-С. 1426-1430.
- Голдстейн Дж. Полугруппы линейных операторов и их приложения.- Киев: Выща школа, 1989.
- Закора Д.А. Экспоненциальная устойчивость одной полугруппы и приложения// Мат. заметки.- 2018.-103, № 5.-С. 702-719.
- Закора Д.А. Асимптотика решений в задаче о малых движениях сжимаемой жидкости Максвелла// Дифф. уравн.- 2019.- 55, № 9.-С. 1195-1208.
- Ильюшин А.А., Победря Б.Е. Основы математической теории термовязко-упругости.- М.: Наука, 1970.
- Като Т. Теория возмущений линейных операторов.-М.: Мир, 1972.
- Крейн C.Г. Линейные дифференциальные уравнения в банаховом пространстве.-М.: Наука, 1967.
- Alabau-Boussouria F., Cannarsa P. A general method for proving sharp energy decay rates for memorydissipative evolution equations// C. R. Math. Acad. Sci. Paris.-2009.- 347.-С. 867-872.
- Alabau-Boussouria F., Cannarsa P., Sforza D. Decay estimates for second order evolution equations with memory// J. Funct. Anal.- 2008.- 254.-С. 1342-1372.
- Ammar-Khodja F., Benabdallah A., Mun˜oz Rivera J.E., Racke R. Energy decay for Timoshenko systems of memory type// J. Differ. Equ. - 2003.-194, № 1.-С. 82-115.
- Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with Memory.-Boston: Springer, 2012.
- Dafermos C.M. Asymptotic stability in viscoelasticity// Arch. Ration. Mech. Anal.- 1970.-37.-С. 297- 308.
- Dafermos C.M. An abstract Volterra equation with applications to linear viscoelasticity// J. Differ. Equ. - 1970.-7, № 3.-С. 554-569.
- Dell’Oro F. Asymptotic stability of thermoelastic systems of Bresse type// J. Differ. Equ. - 2015.- 258, № 11.-С. 3902-3927.
- Engel K. -J., Nagel R. One-Parameter Semigroups for Linear Evolution Eqations.- New York: Springer, 2000.
- Fabrizio M., Morro A. Mathematical Problems in Linear Viscoelasticity.- Philadelphia: SIAM, 1992.
- Fatori L.H., Monteiro R.N., Sare H.D.F. The Timoshenko system with history and Cattaneo law// Appl. Math. Comput. -2014.- 228, № 1.-С. 128-140.
- Liu Z., Zheng S. Semigroups Associated with Dissipative Systems.-London: Chapman & Hall/CRC, 1999. 20. Ma Z., Zhang L., Yang X. Exponential stability for a Timoshenko-type system with history// J. Math. Anal. Appl. -2011.-380, № 1.- С. 299-312.
- Messaoudi S.A., Apalara T.A. General stability result in a memory-type porous thermoelasticity system of type III// Arab J. Math. Sci.- 2014.- 20, № 2.- С. 213-232.
- Mun˜oz Rivera J.E., Naso M.G. Asymptotic stability of semigroups associated with linear weak dissipative systems with memory// J. Math. Anal. Appl. -2007.- 326.-С. 691-707.
- Pandolfi L. Linear systems with persistent memory: An overview of the biblography on controllability// ArXiv. -2018.-1804.01865 [math.OC].
- Racke R., Said-Houari B. Global existence and decay property of the Timoshenko system in thermoelasticity with second sound// Nonlinear Anal. -2012.-75, № 13.- С. 4957-4973.
- Renardy M., Hrusa W.J., Nohel J.A. Mathematical problems in viscoelasticity.- Harlow: Longman Scientific & Technical, 1987.
- Zakora D. On the spectrum of rotating viscous relaxing fluid// Журн. мат. физ. анал. геом.- 2016.- 12, № 4.- С. 338-358.