Bi-Variationality, Symmetries and Approximate Solutions

Cover Page

Cite item

Abstract

By a bi-variational system we mean any system of equations generated by two different Hamiltonian actions. A connection between their variational symmetries is established. The effective use of the nonclassical Hamiltonian actions for the construction of approximate solutions with the high accuracy for the given dissipative problem is demonstrated. We also investigate the potentiality of the given operator equation with the second-order time derivative, construct the corresponding functional and find necessary and sufficient conditions for the operator S to be a generator of symmetry of the constructed functional. Theoretical results are illustrated by some examples.

About the authors

V. M. Filippov

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: v.filippov@rudn.ru
Moscow, Russia

V. M. Savchin

Peoples’ Friendship University of Russia (RUDN University)

Email: savchin-vm@rudn.ru
Moscow, Russia

S. A. Budochkina

Peoples’ Friendship University of Russia (RUDN University)

Email: budochkina-sa@rudn.ru
Moscow, Russia

References

  1. Будочкина С. А., Савчин В. М. Вариационные симметрии эйлеровых и неэйлеровых функционалов// Дифф. уравн. - 2011. - 47, № 6. - C. 811-818.
  2. Козлов В. В. Симметрии, топология и резонансы в гамильтоновой механике. - Ижевск: Изд-во Удмуртского гос. ун-та, 1995.
  3. Олвер П. Приложения групп Ли к дифференциальным уравнениям. - М.: Мир, 1989.
  4. Савчин В. М. Математические методы механики бесконечномерных непотенциальных систем. - М.: РУДН, 1991.
  5. Савчин В. М., Будочкина С. А. О существовании вариационного принципа для операторного уравнения со второй производной по «времени»// Мат. заметки. - 2006. - 80, № 1. - C. 87-94.
  6. Савчин В. М., Будочкина С. А. Симметрии и первые интегралы в механике бесконечномерных систем// Докл. РАН. - 2009. - 425, № 2. - C. 169-171.
  7. Филиппов В. М. Вариационные принципы для непотенциальных операторов. - М.: РУДН, 1985.
  8. Филиппов В. М. О вариационном принципе для гипоэллиптических уравнений с постоянными коэффициентами// Дифф. уравн.- 1986.- 22, № 2. - C. 338-343.
  9. Филиппов В. М. О полуограниченных решениях обратных задач вариационного исчисления// Дифф. уравн. - 1987. - 23, № 9. - C. 1599-1607.
  10. Budochkina S. A. Symmetries and first integrals of a second order evolutionary operator equation// Eurasian Math. J. - 2012. - 3, № 1. - C. 18-28.
  11. Budochkina S. A. On connection between variational symmetries and algebraic structures// Ufa Math. J. - 2021. - 13, № 1. - C. 46-55.
  12. Filippov V. M., Savchin V. M., Budochkina S. A. On the existence of variational principles for differentialdifference evolution equations// Proc. Steklov Inst. Math. - 2013. - 283.- C. 20-34.
  13. Filippov V. M., Savchin V. M., Shorokhov S. G. Variational principles for nonpotential operators// J. Math. Sci. (N.Y.). - 1994. - 68, № 3. - C. 275-398.
  14. Marchuk G. I. Construction of adjoint operators in non-linear problems of mathematical physics// Sb. Math. - 1998. - 189, № 10. - C. 1505-1516.
  15. Mikhlin S. G. Numerical performance of variational methods. - Groningen: Wolters-Noordhoff Publ., 1965.
  16. Popov A. M. Potentiality conditions for differential-difference equations// Differ. Equ. - 1998. - 34, № 3. - C. 423-426.
  17. Popov A. M. Inverse problem of the calculus of variations for systems of differential-difference equations of second order// Math. Notes. - 2002. - 72, № 5. - C. 687-691.
  18. Savchin V. M., Budochkina S. A. Invariance of functionals and related Euler-Lagrange equations// Russ. Math. - 2017. - 61, № 2. - C. 49-54.
  19. Tleubergenov M. I., Azhymbaev D. T. On the solvability of stochastic Helmholtz problem// J. Math. Sci. - 2021. - 253. - C. 297-305.
  20. Tleubergenov M. I., Ibraeva G. T. On inverse problem of closure of differential systems with degenerate diffusion// Eurasian Math. J. - 2019. - 10, № 2. - C. 93-102.
  21. Tleubergenov M. I., Ibraeva G. T. On the solvability of the main inverse problem for stochastic differential systems// Ukr. Math. J. - 2019. - 71, № 1. - C. 157-165.
  22. Tonti E. On the variational formulation for linear initial value problems// Ann. Mat. Pura Appl. - 1973. - 95. - C. 331-359.
  23. Tonti E. Variational formulation for every nonlinear problem// Int. J. Eng. Sci. - 1984. - 22, № 11-12. - C. 1343-1371.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies