Local renormalized solutions of elliptic equations with variable exponents in unbounded domains

Cover Page

Cite item

Abstract

In this paper, we consider a second-order quasilinear elliptic equation with variable nonlinearity exponents and a locally summable right-hand side. The stability property is established and, as a consequence, the existence of a local renormalized solution of the Dirichlet problem in an arbitrary unbounded domain is proved.

About the authors

L. M. Kozhevnikova

Ufa University of Science and Technology; Elabuga Institute of Kazan Federal University

Author for correspondence.
Email: kosul@mail.ru
Sterlitamak, Russia; Elabuga, Russia

References

  1. Данфорд Н., Шварц Дж.Т. Линейные операторы. Общая теория.-M.: ИЛ, 1962.
  2. Жиков В.В. О вариационных задачах и нелинейных эллиптических уравнениях с нестандартными условиями роста// Пробл. мат. анализа.-2011.-54.-C. 23-112.
  3. Кожевникова Л.М. Ренормализованные решения эллиптических уравнений с переменными показателями и данными в виде общей меры// Мат. сб.- 2020.- 211, № 12.-C. 83-122.
  4. Bidaut-Veron M.-F. Removable singularities and existence for a quasilinear equation with absorption or source term and measure data// Adv. Nonlinear Stud. - 2003.- 3, № 1. -С. 25-63.
  5. Boccardo L., Gallou¨et Th. Nonlinear elliptic equations with right-hand side measures// Commun. Part. Differ. Equ. - 1992.- 17, № 3-4.- С. 641-655.
  6. Dal Maso G., Malusa A. Some properties of reachable solutions of nonlinear elliptic equations with measure data// Ann. Sc. Norm. Super. Pisa Cl. Sci. -1997.-25, № 1-2.-С. 375-396.
  7. Diening L., Harjulehto P., Ha¨st¨o P., R˚u˘zi˘cka M. Lebesgue and Sobolev spaces with variable exponents.- Berlin-Heidelberg: Springer, 2011.
  8. Fan X.L., Zhao D. On the spaces Lp(x)(Ω) and Wk,p(x)(Ω)// J. Math. Anal. Appl. -2001.-263.- С. 424- 446
  9. Hewitt E., Stromberg K. Real and abstract analysis.-Berlin-Heidelberg: Springer, 1965.
  10. Kilpela¨inen T., Kuusi T., Tuhola-Kujanp¨aa¨ A. Superharmonic functions are locally renormalized solutions// Ann. Henri Poincar´e.- 2011.- 28.-С. 775-795.
  11. Mokhtari F. Nonlinear anisotropic elliptic equations in RN with variable exponents and locally integrable data// Math. Methods Appl. Sci.- 2017.- 40.-С. 2265-2276.
  12. Sanch´on M., Urbano J.M. Entropy solutions for the p(x)-laplace equation// Trans. Am. Math. Soc.- 2009.-361, № 12.- С. 6387-6405.
  13. V´eron L. Local and global aspects of quasilinear degenerate elliptic equations. Quasilinear elliptic singular problems.-Hackensack: World Sci. Publ., 2017.

Copyright (c) 2025 Kozhevnikova L.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies