On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation
- Authors: Panov E.Y.1,2
-
Affiliations:
- Yaroslav-the-Wise Novgorod State University
- Research and Development Center
- Issue: Vol 69, No 4 (2023)
- Pages: 676-684
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/37483
- DOI: https://doi.org/10.22363/2413-3639-2023-69-4-676-684
- EDN: https://elibrary.ru/ZEGDSE
Cite item
Full Text
Abstract
An explicit form of weak solutions to the Riemann problem for a degenerate nonlinear parabolic equation with a piecewise constant diffusion coe cient is found. It is shown that the lines of phase transitions (free boundaries) correspond to the minimum point of some strictly convex and coercive function of a nite number of variables. A similar result is true for Stefan’s problem. In the limit, when the number of phases tends to in nity, there arises a variational formulation of self-similar solutions to the equation with an arbitrary nonnegative diffusion function.
About the authors
E. Yu. Panov
Yaroslav-the-Wise Novgorod State University; Research and Development Center
Author for correspondence.
Email: eugeny.panov@novsu.ru
Novgorod the Great, Russia
References
- Карслоу Г., Егер Дж. Теплопроводность твёрдых тел. - М.: Наука, 1964.
- Кружков С. Н. Квазилинейные уравнения первого порядка со многими независимыми переменными// Мат. сб. - 1970. - 81, № 2. - С. 228-255.
- Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. - М.: Наука, 1967.
- Carrillo J. Entropy solutions for nonlinear degenerate problems// Arch. Ration. Mech. Anal. - 1999. - 147. - С. 269-361.
- Panov E. Yu. On weak completeness of the set of entropy solutions to a degenerate non-linear parabolic equation// SIAM J. Math. Anal. - 2012. - 44, № 1. - С. 513-535.
- Panov E. Yu. Solutions of an ill-posed Stefan problem// J. Math. Sci. (N. Y.) - 2023. - 274, № 4. - С. 534- 543.