On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation

Cover Page

Cite item

Abstract

An explicit form of weak solutions to the Riemann problem for a degenerate nonlinear parabolic equation with a piecewise constant diffusion coe cient is found. It is shown that the lines of phase transitions (free boundaries) correspond to the minimum point of some strictly convex and coercive function of a nite number of variables. A similar result is true for Stefan’s problem. In the limit, when the number of phases tends to in nity, there arises a variational formulation of self-similar solutions to the equation with an arbitrary nonnegative diffusion function.

About the authors

E. Yu. Panov

Yaroslav-the-Wise Novgorod State University; Research and Development Center

Author for correspondence.
Email: eugeny.panov@novsu.ru
Novgorod the Great, Russia

References

  1. Карслоу Г., Егер Дж. Теплопроводность твёрдых тел. - М.: Наука, 1964.
  2. Кружков С. Н. Квазилинейные уравнения первого порядка со многими независимыми переменными// Мат. сб. - 1970. - 81, № 2. - С. 228-255.
  3. Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. - М.: Наука, 1967.
  4. Carrillo J. Entropy solutions for nonlinear degenerate problems// Arch. Ration. Mech. Anal. - 1999. - 147. - С. 269-361.
  5. Panov E. Yu. On weak completeness of the set of entropy solutions to a degenerate non-linear parabolic equation// SIAM J. Math. Anal. - 2012. - 44, № 1. - С. 513-535.
  6. Panov E. Yu. Solutions of an ill-posed Stefan problem// J. Math. Sci. (N. Y.) - 2023. - 274, № 4. - С. 534- 543.

Copyright (c) 2023 Panov E.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies