Einstein material balance and modeling of the flow of compressible fluid near the boundary
- Authors: Ibraguimov A.1,2, Zakirov E.2, Indrupskiy I.2, Anikeev D.2, Zhaglova A.2
-
Affiliations:
- Texas Tech University
- Oil and Gas Research Institute of the RAS
- Issue: Vol 69, No 4 (2023)
- Pages: 643-663
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/37481
- DOI: https://doi.org/10.22363/2413-3639-2023-69-4-643-663
- EDN: https://elibrary.ru/YWEHJV
Cite item
Full Text
Abstract
We consider sewing machinery between nite difference and analytical solutions de ned at different scales: far away and near the source of the perturbation of the flow. One of the essences of the approach is that the coarse problem and the boundary-value problem in the proxy of the source model two different flows. In his remarkable paper, Peaceman proposes a framework for dealing with solutions de ned on different scales for linear time independent problems by introducing the famous Peaceman well block radius. In this article, we consider a novel problem: how to solve this issue for transient flow generated by the compressibility of the fluid. We are proposing a method to glue solution via total fluxes, which are prede ned on coarse grid, and changes in pressure, due to compressibility, in the block containing production (injection) well. It is important to mention that the coarse solution “does not see” the boundary. From an industrial point of view, our report provides a mathematical tool for the analytical interpretation of simulated data for compressible fluid flow around a well in a porous medium. It can be considered a mathematical “shirt” on the Peaceman well-block radius formula for linear (Darcy) transient flow but can be applied in much more general scenarios. In the article, we use the Einstein approach to derive the material balance equation, a key instrument to de ne R0. We will expand the Einstein approach for three regimes of Darcy and non-Darcy flows for compressible fluids (time-dependent): 1. stationary; 2. pseudostationary; 3. boundary dominated. Note that in all known authors literature, the rate of production on the well is time-independent.
About the authors
A. Ibraguimov
Texas Tech University; Oil and Gas Research Institute of the RAS
Author for correspondence.
Email: akif.ibraguimov@ttu.edu
Lubbock, USA; Moscow, Russia
E. Zakirov
Oil and Gas Research Institute of the RAS
Email: ezakirov@ogri.ru
Moscow, Russia
I. Indrupskiy
Oil and Gas Research Institute of the RAS
Email: i-ind@ipng.ru
Moscow, Russia
D. Anikeev
Oil and Gas Research Institute of the RAS
Email: anikeev@ogri.ru
Moscow, Russia
A. Zhaglova
Oil and Gas Research Institute of the RAS
Email: azhalova90@gmail.com
Moscow, Russia
References
- Вахитов Г. Г. Решение задач подземной гидродинамики методом конечных разностей// Тр. ВНИИнефть. - 1957. - 10. - С. 53-88.
- Ландис Е. М. Уравнения второго порядка эллиптического и параболического типов. - М.: Наука, 1971.
- Толстов Ю. Г. Применение метода электрического моделирования физических явлений к решению некоторых задач подземной гидравлики// Ж. техн. физ. - 1942. - 12, № 10. - С. 20-25.
- Anikeev D. P., Ibragimov A. I., Indrupskiy I. M. Non-linear flow simulations with corrected Peaceman formula for well pressure calculation// AIP Conf. Proc. - 2023. - 2872. - 120053.
- Budak B. M., Samarskii A. A., Tikhonov A. N. A collection of problems on mathematical physics. - Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press, 1964.
- Dake L. P. Fundamentals of reservoir engineering. - Amsterdam-London-New York-Tokyo: Elsevier, 1978.
- Ding Y., Renard G., Weill L. Representation of wells in numerical reservoir simulation// SPE Res. Eval. Engrg. - 1998. - 1. - С. 18-23.
- Einstein A. Uber die von der molekularkinetischen Theorie der W¨arme geforderte Bewegung von in ruhenden Flu¨ssigkeiten suspendierten Teilchen// Ann. Phys. - 1905. - 322, № 8. - С. 549-560.
- Ibragimov A., Khalmanova D., Valko P. P., Walton J. R. On a mathematical model of the productivity index of a well from reservoir engineering// SIAM J. Appl. Math. - 2005. - 65. - С. 1952.
- Ibragimov A., Sobol Z., Hevage I. Einstein’s model of “the movement of small particles in a stationary liquid” revisited: nite propagation speed// Turkish J. Math. - 2023. - 47, № 4. - Article 4.
- Ibragimov A., Zakirov E., Indrupskiy I., Anikeev D. Fundamentals in Peaceman model for well-block radius for non-linear flows near well// ArXiv. - 2022. - 2203.10140.
- Klausen R. A., Aavatsmark I. Connection transmissibility factors in reservoir simulation for slanted wells in 3D grids// В сб.: « Proc. of the 7th European Conf. on the Mathematics of Oil Recovery, Baveno, Italy, 5-8 September 2000». - cp-57-00032.
- Mochizuki S. Well productivity for arbitrarily inclined well// SPE Reservoir Simulation Symposium. - 1995. - SPE-29133-MS.
- Ouyang L. B., Aziz K. A general single-phase wellbore/reservoir coupling model for multilateral wells// SPE Res. Eval. Engrg. - 2001. - 4. - С. 327-335.
- Peaceman D. W. Interpretation of well-block pressures in numerical reservoir simulation// SPE Journal. - 1978. - 18. - С. 183-194.
- Peaceman D. W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability// SPE Journal. - 1983. - 23. - С. 531-543.
- Peaceman D. W. Representation of a horizontal well in numerical reservoir simulation//SPE Adv. Tech. Ser. - 1993. - 1. - С. 7-16.