Shadowing property for nonautonomous dynamical systems

Cover Page

Cite item


A new approach based on the analysis of the influence of a single perturbation is proposed as a test for the shadowing property for a broad class of dynamical systems (in particular, non-autonomous) under a variety of perturbations. Applications for several interesting cases are considered in detail.

About the authors

M. L. Blank

Institute for Information Transmission Problems of the RAS (Kharkevich Institute); HSE University

Author for correspondence.
Moscow, Russia


  1. Аносов Д. В. Об одном классе инвариантных множеств гладких динамических систем// В сб.: «Труды V Межд. конф. по нелинейным колебаниям. Т. 2». -Киев: Ин-т математики АН УССР, 1970. -С. 39-45.
  2. Blank M. Metric properties of ε-trajectories of dynamical systems with stochastic behaviour// Ergodic Theory Dynam. Systems. -1988. - 8, № 3. -С. 365-378.
  3. Blank M. Average shadowing and gluing property// ArXiv. -2022. - 2202.13407 [math.DS].
  4. Blank M. Average shadowing revisited// ArXiv. -2022. -2205.10769 [math.DS nlin.CD].
  5. Bowen R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. -Berlin: Springer, 1975.
  6. Katok A., Hasselblatt B. Introduction to the modern theory of dynamical systems. -Cambridge: Univ. Press, 1995.
  7. Kulczycki M., Kwietniak D., Oprocha P. On almost specification and average shadowing properties// Fund. Math. -2014. - 224. -С. 241-278.
  8. Pilyugin S. Yu., Sakai K. Shadowing and hyperbolicity. -Cham: Springer, 2017.

Copyright (c) 2023 Blank M.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies