Nonautonomous dynamics: classification, invariants, and implementation
- Authors: Grines V.Z.1, Lerman L.M.1
-
Affiliations:
- National Research University “Higher School of Economics”
- Issue: Vol 68, No 4 (2022)
- Pages: 596-620
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/33493
- DOI: https://doi.org/10.22363/2413-3639-2022-68-4-596-620
Cite item
Full Text
Abstract
The work is a brief review of the results obtained in nonautonomous dynamics based on the concept of uniform equivalence of nonautonomous systems. This approach to the study of nonautonomous systems was proposed in [10] and further developed in the works of the second author, and recently - jointly by both authors. Such an approach seems to be fruitful and promising, since it allows one to develop a nonautonomous analogue of the theory of dynamical systems for the indicated classes of systems and give a classi cation of some natural classes of nonautonomous systems using combinatorial type invariants. We show this for classes of nonautonomous gradient-like vector elds on closed manifolds of dimensions one, two, and three. In the latter case, a new equivalence invariant appears, the wild embedding type for stable and unstable manifolds [14,17], as shown in a recent paper by the authors [5].
About the authors
V. Z. Grines
National Research University “Higher School of Economics”
Author for correspondence.
Email: vgrines@yandex.ru
Nizhniy Novgorod, Russia
L. M. Lerman
National Research University “Higher School of Economics”
Email: lermanl@mm.unn.ru
Nizhniy Novgorod, Russia
References
- Алексеев В. М., Фомин С. В. Михаил Валерьевич Бебутов// Усп. мат. наук. - 1970. - 25, № 3. - С. 237-239.
- Аносов Д. В. Геодезические потоки на замкнутых римановых многообразиях отрицательной кривизны// Тр. МИАН. - 1967. - 90. - С. 3-210.
- Вайнштейн А. Г., Лерман Л. М. Неавтономные надстройки над диффеоморфизмами и геометрия близости// Усп. мат. наук. - 1976. - 31, № 5. - С. 231-232.
- Вайнштейн А. Г., Лерман Л. М. Равномерные структуры и эквивалентность диффеоморфизмов// Мат. заметки. - 1978. - 23, № 5. - С. 739-752.
- Гринес В. З., Лерман Л. М. Неавтономные векторные поля на S3: простаядинамика и дикое вложение сепаратрис// Теор. мат. физ. - 2022. - 212, № 1. - С. 15-32.
- Далецкий Ю. Л., Крейн М. Г. Устойчивость решений дифференицальных уравнений в банаховом пространстве. - М.: Наука, 1970.
- Демидович Б. П. Лекции по математической теории устойчивости. - М.: Наука, 1967.
- Левитан Б. М., Жиков В. В. Почти-периодические функции и дифференциальные уравнения. - М.: МГУ, 1978.
- Лерман Л. М. О неавтономных динамических системах типа Морса-Смейла// Дисс. канд. физ.-мат. наук. - Горький: Горьк. гос. ун-т, 1975.
- Лерман Л. М., Шильников Л. П. О классификации грубых неавтономных систем с конечным числом ячеек// Докл. АН СССР. - 1973. - 209, № 3. - С. 544-547.
- Морозов А. Д., Морозов К. Е. Транзиторный сдвиг в задаче о флаттере// Нелин. динамика. - 2015. - 11, № 3. - С. 447-457.
- Akhmet’ev P. M., Medvedev T. V., Pochinka O. V. On the number of the classes of topological conjugacy of Pixton di eomorphisms// Qual. Theory Dyn. Syst. - 2021. - 20. - 76.
- Amerio L. Soluzioni quasi-periodiche, o limitate, di sistemi di erenziali non lineari quasi-periodici, o limitati// Ann. Mat. Pura Appl. - 1955. - 39. - С. 97-119.
- Artin E., Fox R. Some wild cells and spheres in three-dimensional space// Ann. Math. - 1948. - 49.- С. 979-990.
- Barreira L., Valls C. Stability of nonautonomous di erential equations. - Berlin-Heidelberg: Springer, 2008.
- Bochner S. Sur les fonctions presque p´eriodiques de Bohr// C. R. - 1925. - 180. - С. 1156-1158.
- Bonatti Ch., Grines V. Knots as topological invariant for gradient-like di eomorphisms of the sphere S3// J. Dyn. Control Syst. - 2000. - 6, № 4. - С. 579-602.
- Bonatti Ch., Grines V., Medvedev V., Pecou E. Topological classi cation of gradient-like di eomorphisms on 3-manifolds// Topology. - 2004. - 43. - С. 369-391.
- Bonatti C., Grines V. Z., Pochinka O. Topological classi cation of Morse-Smale di eomorphisms on 3manifolds// Duke Math. J. - 2019. - 168, № 13. - С. 2507-2558.
- Cerf J. Sur les di ´eomorphismes de la sph´ere de dimension trois (Γ4 = 0). - Berlin: Springer, 1968.
- Coppel W. A. Stability and asymptotic behavior of di erential equations. - Boston: D.C. Heath and Company, 1965.
- Corduneanu C. Almost periodic oscillations and waves. - New York: Springer, 2009.
- Daverman R. J., Venema G. A. Embedding in manifolds. - Providence: AMS, 2009.
- Favard J. Sur les eq´uations di erentielles ´a coe cients presqu-periodiques// Acta Math. - 1927. - 51.- С. 31-81.
- Gonchenko S. V., Shilnikov L. P., Turaev D. V. On dynamical properties of multidimensional diffeomorphisms from Newhouse regions// Nonlinearity. - 2008. - 21, № 5. - С. 923-972.
- Grines V., Medvedev T., Pochinka O. Dynamical systems on 2-and 3-manifolds. - Cham: Springer, 2016.
- Harrold O. G., Gri th H. C., Posey E. E. A characterization of tame curves in three-space// Trans. Am. Math. Soc. - 1955. - 79. - С. 12-34.
- Lerman L. M., Gubina E. V. Nonautonomous gradient-like vector elds on the circle: classi cation, structural stability and autonomization// Discrete Contin. Dyn. Syst. Ser. S. - 2020. - 13, № 4. - С. 1341- 1367.
- Lerman L. M., Shilnikov L. P. Homoclinical structures in nonautonomous systems: nonautonomous chaos// Chaos. - 1992. - 2, № 3. - С. 447-454.
- Marcus L. Asymptotically autonomous di erential equations// В сб.: «Contributions to the Theory of Nonlinear Oscillations. III». - Princeton: Princeton Univ. Press, 1956. - С. 17-29.
- Massera J. L., Scha¨ er J. J. Linear di erential equations and function spaces. - New York-London: Academic Press, 1966.
- Mazur B. A note on some contractible 4-manifolds// Ann. Math. - 1961. - 73, № 1. - С. 221-228.
- Mosovsky B. A., Meiss J. D. Transport in transitory dynamical systems// SIAM J. Appl. Dyn. Syst. - 2011. - 10, № 1. - С. 35-65.
- Newman M. H. A. Elements of the topology of plane sets of points. - Cambridge: Cambridge Univ. Press, 1964.
- Perron O. Die Stabilit¨atsfrage bei Differentialgleichungen// Math. Z. - 1930. - 32. - С. 703-728.
- Pixton D. Wild unstable manifolds// Topology. - 1977. - 16, № 2. - С. 167-172.
- Pochinka O., Shubin D. On 4-dimensional ows with wildly embedded invariant manifolds of a periodic orbit// Appl. Math. Nonlinear Sci. Ser. - 2020. - 5, № 2. - С. 261-266.
- Sell G. Nonautonomous di erential equations and topological dynamics. I// Trans. Am. Math. Soc. - 1967. - 127. - С. 241-262.
- Sell G. Nonautonomous di erential equations and topological dynamics. II// Trans. Am. Math. Soc. - 1967. - 127. - С. 263-283.
- Smale S. Morse inequality for a dynamical systems// Bull. Am. Math. Soc. - 1960. - 66. - С. 43-49.